Advertisement

Parallel Computation for Sparse Network Component Analysis

  • Dina ElsayadEmail author
  • Safwat Hamad
  • Howida A. Shedeed
  • M. F. Tolba
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 921)

Abstract

The Gene regulatory network analysis is one of the gene expression data analysis tasks. Gene regulatory network goal is determining the topological order of genes interactions. Moreover, the regulatory network is a vital for understanding genes influence on each other. However, the main challenge confronting gene regulatory network algorithms is the massive data size. Where, the algorithm runtime is relative to the data size. This paper presents a Parallel computation for Sparse Network Component Analysis (PSparseNCA) with application on gene regulatory network. PSparseNCA is a parallel version of SparseNCA. PSparseNCA enhanced the computation of SparseNCA using a distributed computing model. Where, the workload is distributed among P processing nodes, PSparseNCA is more efficient than SparseNCA. It achieved a better performance and its speedup reached 12.33. In addition, PsparseNCA complexity is O(NM2/P) instead of O(NM2) for SparseNCA.

Keywords

Gene data Bioinformatics Component analysis High performance Parallel Regulatory network 

References

  1. 1.
    Velculescu, V.E., Zhang, L., Vogelstein, B., Kinzler, K.W.: Serial analysis of gene expression. Science 270(5235), 484–487 (1995)Google Scholar
  2. 2.
    Isea, R.: The present-day meaning of the word bioinformatics. Glob. J. Adv. Res. 2, 70–73 (2015)Google Scholar
  3. 3.
    Nair, A.: Computational biology & bioinformatics - a gentle overview. Commun. Comput. Soc. India 30(1), 7–12 (2007)Google Scholar
  4. 4.
    Cosmides, L., Tooby, J.: From Function to Structure: The Role of Evolutionary Biology and Computational Theories in Cognitive Neuroscience. The MIT Press (1995)Google Scholar
  5. 5.
    Durbin, R.: Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids. Cambridge university press (1998)Google Scholar
  6. 6.
    Kelley, L.A., MacCallum, R.M., Sternberg, M.J.: Enhanced genome annotation using structural profiles in the program 3D-PSSM. J. Mol. Biol. 299(2), 501–522 (2000)Google Scholar
  7. 7.
    Ghaemmaghami, S., Huh, W.-K., Bower, K., Howson, R.W., Belle, A., Dephoure, N., O’Shea, E.K., Weissman, J.S.: Global analysis of protein expression in yeast. Nature 425(6959), 737–741 (2003)Google Scholar
  8. 8.
    Dominguez, C., Boelens, R., Bonvin, A.M.: HADDOCK: a protein-protein docking approach based on biochemical or biophysical information. J. Am. Chem. Soc. 125(7), 1731–1737 (2003)Google Scholar
  9. 9.
    Janssen, P.J., Jones, W.A., Jones, D.T., Woods, D.R.: Molecular analysis and regulation of the glnA gene of the gram-positive anaerobe Clostridium acetobutylicum. J. Bacteriol. 170(1), 400–408 (1988)Google Scholar
  10. 10.
    Berrozpe, G., Schaeffer, J., Peinado, M.A., Real, F.X., Perucho, M.: Comparative analysis of mutations in the p53 and K-ras genes in pancreatic cancer. Int. J. Cancer 58(2), 185–191 (1994)Google Scholar
  11. 11.
    Shortle, D.: Prediction of protein structure. Curr. Biol. 10(2), 49–51 (2000)Google Scholar
  12. 12.
    Rubin, G.M., Yandell, M.D., Wortman, J.R., Gabor, G.L., Nelson, C.R., Hariharan, I.K., Fortini, M.E., Li, P.W., Apweiler, R., Fleischmann, W.: Comparative genomics of the eukaryotes. Science 287(5461), 2204–2215 (2000)Google Scholar
  13. 13.
    Dowsey, A.W.: High-throughput image analysis for proteomics, Citeseer (2005)Google Scholar
  14. 14.
    Haefner, J.W.: Modeling Biological Systems: Principles and Applications. Springer Science (2005)Google Scholar
  15. 15.
    Churchill, G.A.: Fundamentals of experimental design for cDNA microarrays. Nat. Genet. 32(1), 490–495 (2002)Google Scholar
  16. 16.
    Culf, A., Cuperlovic-Culf, M., Ouellette, R.: Carbohydrate microarrays: survey of fabrication techniques. OMICS: J. Integr. Biol. 10(3), 289–310 (2006)Google Scholar
  17. 17.
    Gasch, A., Spellman, P., Kao, C., Carmel-Harel, O., Eisen, M., Storz, G., Botstein, D., Brown, P.: Genomic expression programs in the response of yeast cells to environmental changes. Mol. Biol. Cell 11(12), 4241–4257 (2000)Google Scholar
  18. 18.
    Schena, M., Shalon, D., Davis, R., Brown, P.: Quantitative monitoring of gene expression patterns with a complementary DNA microarray, in Science, Washington (1995)Google Scholar
  19. 19.
    Yang, Y., Choi, J., Choi, K., Pierce, M., Gannon, D., Kim, S.: BioVLAB-microarray: microarray data analysis in virtual environment. In: IEEE Fourth International Conference on eScience (2008)Google Scholar
  20. 20.
    Aluru, S.: Handbook of Computational Molecular Biology. CRC Press (2006)Google Scholar
  21. 21.
    Jostins, L., Jaeger, J.: Reverse engineering a gene network using an asynchronous parallel evolution strategy. BMC Syst. Biol. 4(1), 17–33 (2010)Google Scholar
  22. 22.
    Klinger, B., Bluthgen, N.: Reverse engineering gene regulatory networks by modular response analysis-a benchmark. Essays Biochem. 62(4), 535–547 (2018)Google Scholar
  23. 23.
    Perkins, M., Daniels, K.: Visualizing dynamic gene interactions to reverse engineer gene regulatory networks using topological data analysis. In: 2017 21st International Conference on Information Visualisation (IV) (2017)Google Scholar
  24. 24.
    Liu, Z.-P.: Reverse engineering of genome-wide gene regulatory networks from gene expression data. Curr. Genomics 16(1), 3–22 (2015)Google Scholar
  25. 25.
    de Souza, M.C., Higa, C.H.A.: Reverse engineering of gene regulatory networks combining dynamic bayesian networks and prior biological knowledge. In: International Conference on Computational Science and Its Applications (2018)Google Scholar
  26. 26.
    Villaverde, A.F., Banga, J.R.: Reverse engineering and identification in systems biology: strategies, perspectives and challenges, vol. 11, no. 91 (2014)Google Scholar
  27. 27.
    Pirgazi, J., Khanteymoori, A.R.: A robust gene regulatory network inference method base on Kalman filter and linear regression. PLoS ONE 13(7), e0200094 (2018)Google Scholar
  28. 28.
    Lam, K.Y., Westrick, Z.M., Muller, C.L., Christiaen, L., Bonneau, R.: Fused regression for multi-source gene regulatory network inference. PLoS Comput. Biol. 12(12), e1005157 (2016)Google Scholar
  29. 29.
    Omranian, N., Eloundou-Mbebi, J.M.O., Mueller-Roeber, B., Nikoloski, Z.: Gene regulatory network inference using fused LASSO on multiple data sets. Scientific Reports 6, 20533 (2016)Google Scholar
  30. 30.
    Guerrier, S., Mili, N., Molinari, R., Orso, S., Avella-Medina, M., Ma, Y.: A predictive based regression algorithm for gene network selection. Front. Genet. 7, 97 (2016)Google Scholar
  31. 31.
    Gregoretti, F., Belcastro, V., Di Bernardo, D., Oliva, G.: A parallel implementation of the network identification by multiple regression (NIR) algorithm to reverse-engineer regulatory gene networks. PLoS ONE 5(4), e10179–e10183 (2010)Google Scholar
  32. 32.
    Sales, G., Romualdi, C.: Parmigene—a parallel R package for mutual information estimation and gene network reconstruction. Bioinformatics 27(13), 1876–1877 (2011)Google Scholar
  33. 33.
    Shi, H., Schmidt, B., Liu, W., Muller-Wittig, W.: Parallel mutual information estimation for inferring gene regulatory networks on GPUs. BMC Res. Notes 4(1), 189–194 (2011)Google Scholar
  34. 34.
    Zhang, X., Zhao, X.-M., He, K., Lu, L., Cao, Y., Liu, J., Hao, J.-K., Liu, Z.-P., Chen, L.: Inferring gene regulatory networks from gene expression data by path consistency algorithm based on conditional mutual information. Bioinformatics 28(1), 98–104 (2011)Google Scholar
  35. 35.
    Meyer, P.E., Lafitte, F., Bontempi, G.: Minet: AR/Bioconductor package for inferring large transcriptional networks using mutual information. BMC Bioinform. 9(1), 461 (2008)Google Scholar
  36. 36.
    Lachmann, A., Giorgi, F.M., Lopez, G., Califano, A.: ARACNe-AP: gene network reverse engineering through adaptive partitioning inference of mutual information. Bioinformatics 32(14), 2233–2235 (2016)Google Scholar
  37. 37.
    Barman, S., Kwon, Y.-K.: A novel mutual information-based Boolean network inference method from time-series gene expression data. PloS one 12(2) (2017)Google Scholar
  38. 38.
    Raychaudhuri, S., Stuart, J.M., Altman, R.B.: Principal components analysis to sum-marize microarray experiments: application to sporulation time series. In: Pacific Symposium on Biocomputing, NIH Public Access, pp. 455–466 (2000)Google Scholar
  39. 39.
    Holter, N.S., Mitra, M., Maritan, A., Cieplak, M., Banavar, J.R., Fedoroff, N.V.: Fundamental patterns underlying gene expression profiles: simplicity from complexity. Proc. Nat. Acad. Sci. 97(15), 8409–8414 (2000)Google Scholar
  40. 40.
    Hyvarinen, A., Karhunen, J., Oja, E.: Independent Component Analysis. John Wiley & Sons (2001)Google Scholar
  41. 41.
    Aapo, H.: Fast and robust fixed-point algorithms for independent component analysis. IEEE Trans. Neural Netw. 10(3), 626–634 (1999)Google Scholar
  42. 42.
    Liebermeister, W.: Linear modes of gene expression determined by independent component analysis. Bioinformatics 18(1), 51–60 (2002)Google Scholar
  43. 43.
    Liao, J.C., Boscolo, R., Yang, Y.-L., Tran, L.M., Sabatti, C., Roychowdhury, V.P.: Network component analysis: reconstruction of regulatory signals in biological systems. In: Proceedings of the National Academy of Sciences (2003)Google Scholar
  44. 44.
    Chang, C., Ding, Z., Hung, Y.S., Fung, P.C.W.: Fast network component analysis (FastNCA) for gene regulatory network reconstruction from microarray data. Bioinformatics 24(11), 1349–1358 (2008)Google Scholar
  45. 45.
    Jayavelu, N.D., Aasgaard, L.S., Bar, N.: Iterative sub-network component analysis enables reconstruction of large scale genetic networks. BMC Bioinform. 16(1), 366 (2015)Google Scholar
  46. 46.
    Shi, Q., Zhang, C., Guo, W., Zeng, T., Lu, L., Jiang, Z., Wang, Z., Liu, J., Chen, L.: Local network component analysis for quantifying transcription factor activities. Methods 124, 25–35 (2017)Google Scholar
  47. 47.
    Noor, A., Ahmad, A., Serpedin, E., Nounou, M., Nounou, H.: ROBNCA: robust network component analysis for recovering transcription factor activities. Bioinformatics 29(19), 2410 (2013)Google Scholar
  48. 48.
    Noor, A., Ahmad, A., Serpedin, E.: SparseNCA: sparse network component analysis for recovering transcription factor activities with incomplete prior information. IEEE/ACM Trans. Comput. Biol. Bioinform. 15(2), 387–395 (2018)Google Scholar
  49. 49.
    Latchman, D.S.: Transcription factors: an overview. Int. J. Biochem. Cell Biol. 29(12), 1305–1312 (1997)Google Scholar
  50. 50.
    Eisen, M.B., Spellman, P.T., Brown, P.O., Botstein, D.: Cluster analysis and display of genome-wide expression patterns. Proc. Nat. Acad. Sci. 95(25), 14863–14868 (1998)Google Scholar
  51. 51.
    Zhu, X., Gerstein, M., Snyder, M.: Getting connected: analysis and principles of biological networks. Genes Develop. 21(9), 1010–1024 (2007)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Dina Elsayad
    • 1
    Email author
  • Safwat Hamad
    • 1
  • Howida A. Shedeed
    • 1
  • M. F. Tolba
    • 1
  1. 1.Faculty of Computer and Information SciencesAin Shams UniversityCairoEgypt

Personalised recommendations