Advertisement

A New Generalized Synchronization Scheme to Control Fractional Chaotic Systems with Non-identical Dimensions and Different Orders

  • Adel Ouannas
  • Giuseppe Grassi
  • Ahmad Taher AzarEmail author
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 921)

Abstract

This paper addresses the problem of generalized synchronization (GS) between fractional order chaotic systems. In this paper, we propose a new control strategy for a complex generalized synchronization (GS) scheme dedicated to non-identical fractional-order chaotic systems characterized by different dimensions. The proposed control parameters are nonlinear in nature. In order to ensure that the proposed scheme converge towards zero, we establish the asymptotic stability of the zero solution to the error system by means of the stability of linear fractional-order systems. In order to assess the validity of the findings, numerical results have been presented for a 3D master system and a 4D slave system. The fractional-order systems employed here are well known in the literature. Matlab simulation results have confirmed the convergence of the error in sufficient time.

Keywords

Chaos and hyperchaos Generalized synchronization Fractional order systems Different dimensions Fractional stability theory 

References

  1. 1.
    AbdelAty, A.M., Azar, A.T., Vaidyanathan, S., Ouannas, A., Radwan, A.G.: Chapter 14 - applications of continuous-time fractional order chaotic systems. In: Azar, A.T., Radwan, A.G., Vaidyanathan, S. (eds.) Mathematical Techniques of Fractional Order Systems, Advances in Nonlinear Dynamics and Chaos (ANDC), pp. 409–449. Elsevier (2018)Google Scholar
  2. 2.
    Azar, A.T., Serrano, F.E.: Fractional order sliding mode PID controller/observer for continuous nonlinear switched systems with PSO parameter tuning. In: Hassanien, A.E., Tolba, M.F., Elhoseny, M., Mostafa, M. (eds.) The International Conference on Advanced Machine Learning Technologies and Applications (AMLTA2018), pp. 13–22. Springer, Cham (2018)CrossRefGoogle Scholar
  3. 3.
    Azar, A.T., Vaidyanathan, S., Ouannas, A.: Fractional Order Control and Synchronization of Chaotic Systems. Studies in Computational Intelligence, vol. 688. Springer, Berlin (2017)Google Scholar
  4. 4.
    Azar, A.T., Kumar, J., Kumar, V., Rana, K.P.S.: Control of a two link planar electrically-driven rigid robotic manipulator using fractional order SOFC. In: Hassanien, A.E., Shaalan, K., Gaber, T., Tolba, M.F. (eds.) Proceedings of the International Conference on Advanced Intelligent Systems and Informatics 2017, pp. 57–68. Springer, Cham (2018)Google Scholar
  5. 5.
    Azar, A.T., Radwan, A.G., Vaidyanathan, S. (eds.) Mathematical Techniques of Fractional Order Systems. Elsevier (2018)Google Scholar
  6. 6.
    Azar, A.T., Serranot, F.E., Vaidyanathan, S.: Chapter 10 - sliding mode stabilization and synchronization of fractional order complex chaotic and hyperchaotic systems. In: Azar, A.T., Radwan, A.G., Vaidyanathan, S. (eds.) Mathematical Techniques of Fractional Order Systems, Advances in Nonlinear Dynamics and Chaos (ANDC), pp. 283–317. Elsevier (2018)Google Scholar
  7. 7.
    Caputo, M.: Linear models of dissipation whose Q is almost frequency independent-II. Geophys. J. Roy. Astron. Soc. 13(5), 529–539 (1967)CrossRefGoogle Scholar
  8. 8.
    Ghoudelbourk, S., Dib, D., Omeiri, A., Azar, A.T.: MPPT control in wind energy conversion systems and the application of fractional control (pi\(\alpha \)) in pitch wind turbine. Int. J. Model. Ident. Control 26(2), 140–151 (2016)CrossRefGoogle Scholar
  9. 9.
    Hongtao, L., Zhen, W., Zongmin, Y., Ronghui, L.: Generalized synchronization and control for incommensurate fractional unified chaotic system and applications in secure communication. Kybernetika 48(2), 190–205 (2012)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Khettab, K., Bensafia, Y., Bourouba, B., Azar, A.T.: Chapter 20 - enhanced fractional order indirect fuzzy adaptive synchronization of uncertain fractional chaotic systems based on the variable structure control: Robust h\(\infty \) design approach. In: Azar, A.T., Radwan, A.G., Vaidyanathan, S. (eds.) Mathematical Techniques of Fractional Order Systems, Advances in Nonlinear Dynamics and Chaos (ANDC), pp. 597–624. Elsevier (2018)Google Scholar
  11. 11.
    Kumar, J., Azar, A.T., Kumar, V., Rana, K.P.S.: Chapter 9 - design of fractional order fuzzy sliding mode controller for nonlinear complex systems. In: Azar, A.T., Radwan, A.G., Vaidyanathan, S. (eds.) Mathematical Techniques of Fractional Order Systems, Advances in Nonlinear Dynamics and Chaos (ANDC), pp. 249–282. Elsevier (2018)Google Scholar
  12. 12.
    Martinez-Guerra, R., Mata-Machuca, J.L.: Fractional generalized synchronization in a class of nonlinear fractional order systems. Nonlinear Dyn. 77(4), 1237–1244 (2014)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Matignon, D.: Stability results for fractional differential equations with applications to control processing. In: In Computational Engineering in Systems Applications, pp. 963–968 (1996)Google Scholar
  14. 14.
    Meghni, B., Dib, D., Azar, A.T., Ghoudelbourk, S., Saadoun, A.: Robust Adaptive Supervisory Fractional Order Controller for Optimal Energy Management in Wind Turbine with Battery Storage, pp. 165–202. Springer, Cham (2017)zbMATHGoogle Scholar
  15. 15.
    Ouannas, A., Al-sawalha, M.M., Ziar, T.: Fractional chaos synchronization schemes for different dimensional systems with non-identical fractional-orders via two scaling matrices. Optik 127(20), 8410–8418 (2016a)CrossRefGoogle Scholar
  16. 16.
    Ouannas, A., Azar, A.T., Vaidyanathan, S.: A robust method for new fractional hybrid chaos synchronization. Math. Method. Appl. Sci. 40(5), 1804–1812 (2016b)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Ouannas, A., Abdelmalek, S., Bendoukha, S.: Coexistence of some chaos synchronization types in fractional-order differential equations. Electr. J. Differ. Equ. 128, 1–15 (2017)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Ouannas, A., Azar, A.T., Vaidyanathan, S.: A new fractional hybrid chaos synchronisation. Int. J. Model. Ident. Control 27(4), 314–322 (2017b)CrossRefGoogle Scholar
  19. 19.
    Ouannas, A., Azar, A.T., Ziar, T., Radwan, A.G.: A Study on Coexistence of Different Types of Synchronization Between Different Dimensional Fractional Chaotic Systems, pp. 637–669. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-50249-6_22
  20. 20.
    Ouannas, A., Azar, A.T., Ziar, T., Vaidyanathan, S.: Fractional Inverse Generalized Chaos Synchronization Between Different Dimensional Systems, pp. 525–551. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-50249-6_18
  21. 21.
    Ouannas, A., Azar, A.T., Ziar, T., Vaidyanathan, S.: A New Method to Synchronize Fractional Chaotic Systems with Different Dimensions, pp. 581–611. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-50249-6_20
  22. 22.
    Ouannas, A., Azar, A.T., Ziar, T., Vaidyanathan, S.: On New Fractional Inverse Matrix Projective Synchronization Schemes, pp. 497–524. Springer, Cham (2017f)zbMATHGoogle Scholar
  23. 23.
    Ouannas, A., Odibat, Z., Alsaedi, A., Hobiny, A., Hayat, T.: Investigation of QS synchronization in coupled chaotic incommensurate fractional order systems. Chinese J. Phys. 56(5), 1940–1948 (2018a)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Ouannas, A., Wang, X., Pham, V.T., Grassi, G., Ziar, T.: Coexistence of identical synchronization, antiphase synchronization and inverse full state hybrid projective synchronization in different dimensional fractional-order chaotic systems. Adv. Differ. Equ. 2018(1), 35 (2018)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Pham, V., Gokul, P.M., Kapitaniak, T., Volos, C., Azar, A.T.: Chapter 16 - dynamics, synchronization and fractional order form of a chaotic system with infinite equilibria. In: Azar, A.T., Radwan, A.G., Vaidyanathan, S. (eds.) Mathematical Techniques of Fractional Order Systems, Advances in Nonlinear Dynamics and Chaos (ANDC), pp. 475–502. Elsevier (2018)Google Scholar
  26. 26.
    Pham, V.T., Vaidyanathan, S., Volos, C.K., Azar, A.T., Hoang, T.M., Van Yem, V.: A Three-Dimensional No-Equilibrium Chaotic System: Analysis, Synchronization and Its Fractional Order Form, pp. 449–470. Springer, Cham (2017)zbMATHGoogle Scholar
  27. 27.
    Pham, V.T., Ouannas, A., Volos, C., Kapitaniak, T.: A simple fractional-order chaotic system without equilibrium and its synchronization. AEU Int. J. Electron. Commun. 86, 69–76 (2018b)CrossRefGoogle Scholar
  28. 28.
    Shukla, M.K., Sharma, B.B., Azar, A.T.: Chapter 19 - control and synchronization of a fractional order hyperchaotic system via backstepping and active backstepping approach. In: Azar, A.T., Radwan, A.G., Vaidyanathan, S. (eds.) Mathematical Techniques of Fractional Order Systems, Advances in Nonlinear Dynamics and Chaos (ANDC), pp. 559–595. Elsevier (2018)Google Scholar
  29. 29.
    Si, G., Sun, Z., Zhang, Y., Chen, W.: Projective synchronization of different fractional-order chaotic systems with non-identical orders. Nonlinear Anal. Real World Appl. 13(4), 1761–1771 (2012)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Singh, S., Azar, A.T., Vaidyanathan, S., Ouannas, A., Bhat, M.A.: Chapter 11 - multiswitching synchronization of commensurate fractional order hyperchaotic systems via active control. In: Azar, A.T., Radwan, A.G., Vaidyanathan, S. (eds.) Mathematical Techniques of Fractional Order Systems, Advances in Nonlinear Dynamics and Chaos (ANDC), pp. 319–345. Elsevier (2018)Google Scholar
  31. 31.
    Soliman, N.S., Said, L.A., Azar, A.T., Madian, A.H., Radwan, A.G., Ounnas, A.: Fractional controllable multi-scroll v-shape attractor with parameters effect. In: 6th International Conference on Modern Circuits and Systems Technologies (MOCAST), pp. 1–4 (2017)Google Scholar
  32. 32.
    Tolba, M.F., AbdelAty, A.M., Saida, L.A., Elwakil, A.S., Azar, A.T., Madian, A.H., Radwan, A.G., Ounnas, A.: FPGA realization of caputo and grünwald-letnikov operators. In: 6th International Conference on Modern Circuits and Systems Technologies (MOCAST), pp. 1–4 (2017)Google Scholar
  33. 33.
    Wang, X., Ouannas, A., Pham, V.T., Abdolmohammadi, H.R.: A fractional-order form of a system with stable equilibria and its synchronization. Adv. Differ. Equ. 2018(1), 20 (2018)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Wu, X., Lai, D., Lu, H.: Generalized synchronization of the fractional-order chaos in weighted complex dynamical networks with nonidentical nodes. Nonlinear Dyn. 69(1), 667–683 (2012a)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Wu, X., Wang, H., Lu, H.: Modified generalized projective synchronization of a new fractional-order hyperchaotic system and its application to secure communication. Nonlinear Anal. Real World Appl. 13(3), 1441–1450 (2012b)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Xue, W., Li, Y., Cang, S., Jia, H., Wang, Z.: Chaotic behavior and circuit implementation of a fractional-order permanent magnet synchronous motor model. J. Franklin Inst. 352(7), 2887–2898 (2015)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Adel Ouannas
    • 1
  • Giuseppe Grassi
    • 2
  • Ahmad Taher Azar
    • 3
    • 4
    Email author
  1. 1.Department of MathematicsUniversity of Larbi TebessiTebessaAlgeria
  2. 2.Dipartimento Ingegneria InnovazioneUniversità del SalentoLecceItaly
  3. 3.Faculty of Computers and InformationBenha UniversityBenhaEgypt
  4. 4.School of Engineering and Applied SciencesNile UniversityGizaEgypt

Personalised recommendations