Advertisement

Reduced 3-D Deep Learning Framework for Hyperspectral Image Classification

  • Noureldin LabanEmail author
  • Bassam Abdellatif
  • Hala M. Ebeid
  • Howida A. Shedeed
  • Mohamed F. Tolba
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 921)

Abstract

In recent years, machine learning has achieved a breakthrough step due to re-branding of Convolutional Neural Networks (CNNs). Advancement in machine learning algorithms makes it easier to process big and information-rich images such as hyper-spectral images. Hyperspectral imaging (HSI) technology has also shown obvious increase in number of satellites and increased number of bands which lead to a huge amount of data generated every day. In this paper, we propose a reduced version for 3-dimensional convolutional neural network (3D-CNN) as a deep learning framework for hyperspectral image classification. The latest proposed CNNs models, especially 3D ones, have achieved near 100% of accuracy with benchmark hyperspectral data sets. Our proposed framework explores the effect of dimensions reduction on the performance with respect to total classification accuracy. In our experiments, two benchmarks HSIs are used to evaluate performance of reduced framework with different number of bands. The experimental results demonstrate that the reduced 3D-CNN framework has significantly reduced the time of training of CNN with more than 60% compared to the full bands training almost without affecting the accuracy of classification.

Keywords

Deep learning Hyperspectral image classification Principal Component Analysis (PCA) 3D-Convolutional Neural Network 

References

  1. 1.
    Yue, J., Mao, S., Li, M.: A deep learning framework for hyperspectral image classification using spatial pyramid pooling. Remote Sens. Lett. 7(9), 875–884 (2016)CrossRefGoogle Scholar
  2. 2.
    Mei, S., Ji, J., Hou, J., Li, X., Du, Q.: Learning sensor-specific spatial-spectral features of hyperspectral images via convolutional neural networks. IEEE Trans. Geosci. Remote Sens. 55(8), 4520–4533 (2017)CrossRefGoogle Scholar
  3. 3.
    Zhou, X., Li, S., Member, F.T., Qin, K., Hu, S., Liu, S.: Deep learning with grouped features for spatial spectral classification of hyperspectral images. IEEE Geosci. Remote Sens. Lett. 14(1), 1–5 (2017)CrossRefGoogle Scholar
  4. 4.
    Zhao, W., Du, S.: Spectral-spatial feature extraction for hyperspectral image classification: a dimension reduction and deep learning approach. IEEE Trans. Geosci. Remote Sens. 54(8), 4544–4554 (2016)CrossRefGoogle Scholar
  5. 5.
    Chen, Y., Jiang, H., Li, C., Jia, X., Ghamisi, P.: Deep feature extraction and classification of hyperspectral images based on convolutional neural networks. IEEE Trans. Geosci. Remote Sens. 54(10), 6232–6251 (2016)CrossRefGoogle Scholar
  6. 6.
    Jain, D.K., Dubey, S.B., Choubey, R.K., Sinhal, A., Arjaria, S.K., Jain, A., Wang, H.: An approach for hyperspectral image classification by optimizing SVM using self organizing map. J. Comput. Sci. (2017)Google Scholar
  7. 7.
    Yue, J., Zhao, W., Mao, S., Liu, H.: Spectral-spatial classification of hyperspectral images using deep convolutional neural networks. Remote Sens. Lett. 6(6), 468–477 (2015)CrossRefGoogle Scholar
  8. 8.
    Li, W., Wu, G., Zhang, F., Du, Q.: Hyperspectral image classification using deep pixel-pair features. IEEE Trans. Geosci. Remote Sens. 55(2), 844–853 (2017)CrossRefGoogle Scholar
  9. 9.
    Zhong, Z., Li, J., Luo, Z., Chapman, M.: Spectral-spatial residual network for hyperspectral image classification: a 3-D deep learning framework. IEEE Trans. Geosci. Remote Sens. 56(2), 847–858 (2018)CrossRefGoogle Scholar
  10. 10.
    Xu, Y., Zhang, L., Du, B., Zhang, F.: Spectral-spatial unified networks for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 1–17 (2018)Google Scholar
  11. 11.
    Basaeed, E., Bhaskar, H., Al-Mualla, M.: Supervised remote sensing image segmentation using boosted convolutional neural networks. Knowl.-Based Syst. 99, 19–27 (2016)CrossRefGoogle Scholar
  12. 12.
    Liu, W., Wang, Z., Liu, X., Zeng, N., Liu, Y., Alsaadi, F.E.: A survey of deep neural network architectures and their applications. Neurocomputing 234(October 2016), 11–26 (2016)CrossRefGoogle Scholar
  13. 13.
    Kamnitsas, K., Ledig, C., Newcombe, V.F., Simpson, J.P., Kane, A.D., Menon, D.K., Rueckert, D., Glocker, B.: Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med. Image Anal. 36, 61–78 (2017)CrossRefGoogle Scholar
  14. 14.
    Yang, X., Ye, Y., Li, X., Lau, R.Y.K., Zhang, X., Huang, X.: Hyperspectral image classification with deep learning models. IEEE Trans. Geosci. Remote Sens. 56(9), 1–16 (2018)CrossRefGoogle Scholar
  15. 15.
    Craig, R., Shan, J.: Principal component analysis for hyperspectral image classification. Surveying Land Inf. Sci. 62(2), 115 (2002)Google Scholar
  16. 16.
    Wang, J., Chang, C.I.: Independent component analysis-based dimensionality reduction with applications in hyperspectral image analysis. IEEE Trans. Geosci. Remote Sens. 44(6), 1586–1600 (2006)CrossRefGoogle Scholar
  17. 17.
    Li, W., Prasad, S., Fowler, J.E., Bruce, L.M.: Locality-preserving dimensionality reduction and classification for hyperspectral image analysis. IEEE Trans. Geosci. Remote Sens. 50(4), 1185–1198 (2012)CrossRefGoogle Scholar
  18. 18.
    Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500), 2323–2326 (2000)CrossRefGoogle Scholar
  19. 19.
    Lazcano, R., Madroñal, D., Salvador, R., Desnos, K., Pelcat, M., Guerra, R., Fabelo, H., Ortega, S., Lopez, S., Callico, G.M., Juarez, E., Sanz, C.: Porting a PCA-based hyperspectral image dimensionality reduction algorithm for brain cancer detection on a manycore architecture. J. Syst. Architect. 77, 101–111 (2017)CrossRefGoogle Scholar
  20. 20.
    Krizhevsky, A., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: NIPS 2012 Proceedings of the 25th International Conference, vol. 1, pp. 1–9 (2012)Google Scholar
  21. 21.
    Lecun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)CrossRefGoogle Scholar
  22. 22.
    Chen, Y., Jiang, H., Li, C., Jia, X., Member, S.: Deep feature extraction and classification of hyperspectral images based on convolutional neural networks. IEEE Trans. Geosci. Remote Sens. 54(10), 1–20 (2016)CrossRefGoogle Scholar
  23. 23.
    Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: 32nd International Conference on Machine Learning, pp. 448–456 (2015)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Noureldin Laban
    • 1
    Email author
  • Bassam Abdellatif
    • 1
  • Hala M. Ebeid
    • 2
  • Howida A. Shedeed
    • 2
  • Mohamed F. Tolba
    • 2
  1. 1.Data Reception and Analysis DivisionNational Authority for Remote Sensing and Space ScienceCairoEgypt
  2. 2.Faculty of Computer and Information SciencesAin Shams UniversityCairoEgypt

Personalised recommendations