Swarm Optimization for Solving Load Balancing in Cloud Computing

  • Aya A. Salah FarragEmail author
  • Safia Abbas Mohamad
  • El Sayed M. El-Horbaty
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 921)


Cloud computing is the new paradigm of representing computing capabilities as a service. With its facility of resource sharing and being cost-effective, it exists in every domain of life, enhancing their functionality and adding new opportunities to it. Accordingly, the focus on solving its dilemmas like load balancing becomes more challenging and the research in swarm-based algorithms to find optimal results has been expanding. This paper discusses the use of two swarm algorithms including Ant-Lion optimizer (ALO) and Grey wolf optimizer (GWO) in task scheduling of the Cloud Computing environment. Additionally, compare the results with commonly known swarm algorithms: Particle Swarm Optimization (PSO) and Firefly Algorithm (FFA). The results show the ALO and GWO are a strong adversary to Particle Swarm Optimization (PSO), and better than Firefly (FFA) and they have potential in load balancing.


Cloud computing Load balancing Task scheduling Ant-Lion optimizer Swarm intelligence 


  1. 1.
    Aslanzadeh, S., Chaczko, Z.: Load balancing optimization in cloud computing: applying endocrine-particale swarm optimization. In: IEEE International Conference 2015 Electro/Information Technology (EIT), pp. 165–169. IEEE (2015)Google Scholar
  2. 2.
    Ramezani, F., Lu, J., Hussain, F.K.: Task-based system load balancing in cloud computing using particle swarm optimization. Int. J. Parallel Prog. 42(5), 739–754 (2014)CrossRefGoogle Scholar
  3. 3.
    Almezeini, N., Hafez, A.: Task Scheduling in Cloud Computing using Lion Optimization Algorithm. Algorithms 5, 7 (2017)Google Scholar
  4. 4.
    Gabi, D., Ismail, A.S., Zainal, A., Zakaria, Z.: Solving task scheduling problem in cloud computing environment using orthogonal taguchi-cat algorithm. Int. J. Electr. Comput. Eng. (IJECE) 7(3), 1489–1497 (2017)CrossRefGoogle Scholar
  5. 5.
    Pathak, P., Mahajan, K.: A pollination based optimization for load balancing task scheduling in cloud computing. Int. J. Adv. Res. Comput. Sci. 25(10) (2017)Google Scholar
  6. 6.
    Mirjalili, S., Mirjalili, S.M., Lewis, A.: Grey wolf optimizer. Adv. Eng. Softw. 69, 46–61 (2014)CrossRefGoogle Scholar
  7. 7.
    Mishra, S.K., Sahoo, B., Parida, P.P.: Load balancing in cloud computing: a big picture. J. King Saud Univ.-Comput. Inf. Sci. (2018)Google Scholar
  8. 8.
    Alam, M., Khan, Z.A.: Issues and challenges of load balancing algorithm in cloud computing environment. Indian J. Sci. Technol. 10(25), 1–12 (2017)CrossRefGoogle Scholar
  9. 9.
    Kaur, S., Sharma, S.: load balancing in cloud computing with enhanced optimal cost scheduling algorithm. Imp. J. Interdisc. Res. 2(9), 1460–1466 (2016)Google Scholar
  10. 10.
    Patel, G., Mehta, R., Bhoi, U.: Enhanced load balanced min-min algorithm for static meta task scheduling in cloud computing. Procedia Comput. Sci. 57, 545–553 (2015)CrossRefGoogle Scholar
  11. 11.
    Susila, N., Chandramathi, S., Kishore, R.: A fuzzy-based firefly algorithm for dynamic load balancing in cloud computing environment. J. Emerg. Technol. Web Intell. 6(4), 35–40 (2014)Google Scholar
  12. 12.
    Kaur, J., Bhardwaj, V.: A novel approach of task scheduling for cloud computing using adaptive firefly. Int. J. Comput. Appl. 147(12), 9–13 (2016)Google Scholar
  13. 13.
    Al-maamari, A., Omara, F.A.: Task scheduling using hybrid algorithm in cloud computing environments. J. Comput. Eng. (IOSR-JCE) 17(3), 96–106 (2015)Google Scholar
  14. 14.
    Jena, R.K.: Multi objective task scheduling in cloud environment using nested PSO framework. Procedia Comput. Sci. 57, 1219–1227 (2015)CrossRefGoogle Scholar
  15. 15.
    Mirjalili, S.: The ant lion optimizer. Adv. Eng. Softw. 83, 80–98 (2015)CrossRefGoogle Scholar
  16. 16.
    Mishra, S.K.: How has cloud computing affected the retail business. PCQuest, 5 October 2018. Accessed 5 Oct 2018
  17. 17.
    Ryan: The Industries Most Affected by the Evolution of Cloud Computing. UTG, Accessed 5 Oct 2018
  18. 18.
    Cloud Computing – Allcenta Inc. Accessed 5 Oct 2018

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Aya A. Salah Farrag
    • 1
    Email author
  • Safia Abbas Mohamad
    • 1
  • El Sayed M. El-Horbaty
    • 1
  1. 1.Ain Shams UniversityCairoEgypt

Personalised recommendations