A New Efficient Power Management Interface for Hybrid Electromagnetic-Piezoelectric Energy Harvesting System

  • Sara Zolfaghar Tehrani
  • Hossein RanjbarEmail author
  • Peter VialEmail author
  • Prashan PremaratneEmail author
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 800)


Harvesting high output power from ambient vibration energy using a hybrid piezoelectric and electromagnetic equivalent circuit is a verified technique. This paper introduces a novel interface circuit for the hybrid system, which has high efficiency and output power. The proposed interface uses a parallel-synchronized switch in the standard AC-DC converter for the piezoelectric energy harvester part, which can greatly improve the output power and efficiency. Moreover, a DC-DC boost converter is used to enhance the extracted energy from the electromagnetic energy harvesting section due to its low output power. The defined interface model implemented on a typical hybrid piezoelectric-electromagnetic system and the simulation results confirm the enhancement of output power to 250 mW along with the efficiency of 80%. The efficiency of the proposed hybrid harvester enhanced 47.36% and 92% in comparison to the standard hybrid and piezoelectric system respectively. The effectiveness of the hybrid circuit confirmed while its extracted power is 50 mW more than the single piezoelectric system with the switch interface.


Full bridge rectifier A DC-DC boost interface Vibration energy The controlled electromechanical interface 


  1. 1.
    Ge Shi, Y.X., Ye, Y., Qian, L., Li, Q.: An efficient self-powered synchronous electric charge extraction interface circuit for piezoelectric energy harvesting systems. J. Intell. Mater. Syst. Struct. 27(16), 2160–2178 (2016)CrossRefGoogle Scholar
  2. 2.
    Anton, S.R., Sodano, H.A.: A review of power harvesting using piezoelectric materials (2003–2006). Smart Mater. Struct. 16(3), R1–R21 (2007)CrossRefGoogle Scholar
  3. 3.
    Dallago, E., Danioni, A., Marchesi, M., Nucita, V., Venchi, G.: A self-powered electronic interface for electromagnetic energy harvester. IEEE Trans. Power Electron. 26(11), 3174–3182 (2011)., Art. no. 5756243CrossRefGoogle Scholar
  4. 4.
    Tzeno Galchev, E.E.A., Najaf, K.: A piezoelectric parametric frequency increased generator for harvesting low-frequency vibrations. Microelectromech. Syst. 21(6), 1311–1320 (2012)CrossRefGoogle Scholar
  5. 5.
    Cao, X., Chiang, W.-J., King, Y.-C., Lee, Y.-K.: Electromagnetic energy harvesting circuit with feedforward and feedback DC–DC PWM boost converter for vibration power generator system. IEEE Trans. Power Electron. 22(2), 679–685 (2007)CrossRefGoogle Scholar
  6. 6.
    Liang, J.: A systematic investigation on piezoelectric energy harvesting with emphasis on interface circuits. Chinese University of Hong Kong (2010)Google Scholar
  7. 7.
    Badel, A., Guyomar, D., Lefeuvre, E., Richard, C.: Piezoelectric energy harvesting using a synchronized switch technique. J. Intell. Mater. Syst. Struct. 17(8–9), 831–839 (2006b)CrossRefGoogle Scholar
  8. 8.
    Guyomar, D., Badel, A., Lefeuvre, E., Richard, C.: Toward energy harvesting using active materials and conversion improvement by nonlinear processing. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 52(4), 584–595 (2005)CrossRefGoogle Scholar
  9. 9.
    Kumari, S., Sahu, S.S., Gupta, B.: Efficient SSHI circuit for piezoelectric energy harvester uses one shot pulse boost converter. Analog Integr. Circ. Sig. Process. 97, 545–555 (2018)CrossRefGoogle Scholar
  10. 10.
    Badel, A., Benayad, A., Lefeuvre, E., Lebrun, L., Richard, C., Guyomar, D.: Single crystals and nonlinear process for outstanding vibration-powered electrical generators. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 53(4), 673–684 (2006)CrossRefGoogle Scholar
  11. 11.
    Lallart, M., Guyomar, D.: An optimized self-powered switching circuit for non-linear energy harvesting with low voltage output. Smart Mater. Struct. 17(3), 035030 (2008)CrossRefGoogle Scholar
  12. 12.
    Ramadass, Y.K., Chandrakasan, A.P.: An efficient piezoelectric energy harvesting interface circuit using a bias-flip rectifier and shared inductor. IEEE J. Solid State Circuits. 45(1), 189–204 (2010)CrossRefGoogle Scholar
  13. 13.
    Wu, Y., Badel, A., Formosa, F., Liu, W., Agbossou, A.: Self-powered optimized synchronous electric charge extraction circuit for piezoelectric energy harvesting. J. Intell. Mater. Syst. Struct. 25(17), 2165–2176 (2014)CrossRefGoogle Scholar
  14. 14.
    Liang, J., Liao, W.-H.: Improved design and analysis of self-powered synchronized switch interface circuit for piezoelectric energy harvesting systems. IEEE Trans. Ind. Electron. 59(4), 1950–1960 (2012)CrossRefGoogle Scholar
  15. 15.
    Wang, S.-W., Ke, Y.-W., Huang, P.-C., Hsieh, P.-H.: Electromagnetic energy harvester interface design for wearable applications. IEEE Trans. Circuits Syst. II Express Briefs. 65(5), 667–671 (2018)CrossRefGoogle Scholar
  16. 16.
    Rahimi, A., Zorlu, O., Kulah, H., Muhtaroglu, A.: An interface circuit prototype for a vibration-based electromagnetic energy harvester. In: Energy Aware Computing (ICEAC), 2010 International Conference on, IEEE, pp. 1–4 (2010)Google Scholar
  17. 17.
    Szarka, G.D., Burrow, S.G., Proynov, P.P., Stark, B.H.: Maximum power transfer tracking for ultralow-power electromagnetic energy harvesters. IEEE Trans. Power Electron. 29(1), 201–212 (2014)CrossRefGoogle Scholar
  18. 18.
    Rahimi, A., Zorlu, Ö., Muhtaroğlu, A., Külah, H.: An electromagnetic energy harvesting system for low frequency applications with a passive interface ASIC in standard CMOS. Sensors Actuators A Phys. 188, 158–166 (2012)CrossRefGoogle Scholar
  19. 19.
    Rahimi, A., Zorlu, Ö., Muhtaroğlu, A., Külah, H.: A compact electromagnetic vibration harvesting system with high performance interface electronics. Procedia Eng. 25, 215–218 (2011)CrossRefGoogle Scholar
  20. 20.
    Sriramdas, R., Pratap, R.: An experimentally validated lumped circuit model for piezoelectric and electrodynamic hybrid harvesters. IEEE Sensors J. 18(6), 2377–2384 (2018)CrossRefGoogle Scholar
  21. 21.
    Yu, H., Zhou, J., Yi, X., Wu, H., Wang, W.: A hybrid micro vibration energy harvester with power management circuit. Microelectron. Eng. 131, 36–42 (2015)CrossRefGoogle Scholar
  22. 22.
    Uluşan, H., Chamanian, S., Pathirana, W., Zorlu, Ö., Muhtaroğlu, A., Külah, H.: A triple hybrid micropower generator with simultaneous multi-mode energy harvesting. Smart Mater. Struct. 27(1), 014002 (2017)CrossRefGoogle Scholar
  23. 23.
    Edwards, B., Aw, K.C., Hu, A.P., Tang, L.: Hybrid electromagnetic-piezoelectric transduction for a frequency up-converted energy harvester. In: Advanced Intelligent Mechatronics (AIM), 2015 IEEE International Conference on, IEEE, pp. 1149–1154 (2015)Google Scholar
  24. 24.
    Cheng, S., Wang, N., Arnold, D.P.: Modeling of magnetic vibrational energy harvesters using equivalent circuit representations. J. Micromech. Microeng. 17(11), 2328–2335 (2007)CrossRefGoogle Scholar
  25. 25.
    Yang, Y., Tang, L.: Equivalent circuit modeling of piezoelectric energy harvesters. J. Intell. Mater. Syst. Struct. 20(18), 2223–2235 (2009)CrossRefGoogle Scholar
  26. 26.
    Park, J.C., Bang, D.H., Park, J.Y.: Micro-fabricated electromagnetic power generator to scavenge low ambient vibration. IEEE Trans. Magn. 46(6), 1937–1942 (2010)CrossRefGoogle Scholar
  27. 27.
    Moore, H.: MATLAB for Engineers. Pearson (2017)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Electrical, Computer and Telecommunications EngineeringWollongong UniversityWollongongAustralia
  2. 2.Department of Electrical EngineeringSharif University of TechnologyTehranIran

Personalised recommendations