Advanced Assessment of the Left Ventricle

  • Masaaki TakeuchiEmail author
  • Karima Addetia
  • Roberto M. Lang


The left ventricle has a unique shape that changes unpredictably in pathological conditions, and a complex mechanics due to a peculiar architectural arrangement of myocardial fibers. Both left ventricular geometry and mechanics cannot be comprehensively analyzed by exploring it with a tomographic imaging technique such as two-dimensional echocardiography (2DE). The need of making assumptions about left ventricular shape and mechanics to calculate geometrical and functional parameters from simple linear dimensions and area measurements is a major limitation of 2DE. Three-dimensional echocardiography, by encompassing the whole left ventricle in the acquisition volume, provides actual measurements of volumes, shape and mass, independent on any assumption about geometry, and allows to follow the motion of myocardial speckles frame-to-frame to allow actual measurement of the various components of myocardial deformation and ventricular torsion.


Left ventricular mass Left ventricular shape Left ventricular torsion 3D strain Speckle tracking 


  1. 1.
    Jenkins C, Bricknell K, Chan J, Hanekom L, Marwick TH. Comparison of two- and three-dimensional echocardiography with sequential magnetic resonance imaging for evaluating left ventricular volume and ejection fraction over time in patients with healed myocardial infarction. Am J Cardiol. 2007;99:300–6.CrossRefGoogle Scholar
  2. 2.
    Jenkins C, Bricknell K, Hanekom L, Marwick TH. Reproducibility and accuracy of echocardiographic measurements of left ventricular parameters using real-time three-dimensional echocardiography. J Am Coll Cardiol. 2004;44:878–86.CrossRefGoogle Scholar
  3. 3.
    Muraru D, Badano LP, Piccoli G, et al. Validation of a novel automated border-detection algorithm for rapid and accurate quantitation of left ventricular volumes based on three-dimensional echocardiography. Eur J Echocardiogr. 2010;11:359–68.PubMedGoogle Scholar
  4. 4.
    Thavendiranathan P, Liu S, Verhaert D, et al. Feasibility, accuracy, and reproducibility of real-time full-volume 3D transthoracic echocardiography to measure LV volumes and systolic function: a fully automated endocardial contouring algorithm in sinus rhythm and atrial fibrillation. JACC Cardiovasc Imaging. 2012;5:239–51.CrossRefGoogle Scholar
  5. 5.
    Chang S-A, Lee S-C, Kim E-Y, et al. Feasibility of single-beat full-volume capture real-time three-dimensional echocardiography and auto-contouring algorithm for quantification of left vnetricular volume: validation with cardiac magnetic resonance imaging. J Am Soc Echocardiogr. 2011;24:853–9.CrossRefGoogle Scholar
  6. 6.
    Shibayama K, Watanabe H, Iguchi N, et al. Evaluation of automated measurement of left ventricular volume by novel real-time 3-dimensional echocardiographic system: validation with cardiac magnetic resonance imaging and 2-dimensional echocardiography. J Cardiol. 2013;61:281–8.CrossRefGoogle Scholar
  7. 7.
    Nesser HJ, Mor-Avi V, Gorissen W, et al. Quantification of left ventricular volumes using three-dimensional speckle tracking: comparison with MRI. Eur Heart J. 2009;30:156–73.CrossRefGoogle Scholar
  8. 8.
    Jacobs LD, Salgo IS, Goonewardena S, et al. Rapid online quantification of left ventricular volume from real-time three-dimensional echocardiographic data. Eur Heart J. 2006;27:460–8.CrossRefGoogle Scholar
  9. 9.
    Shimada YJ, Shiota T. A meta-analysis and investigation for the source of bias of left ventricular volumes and function by three-dimensional echocardiography in comparison with magnetic resonance imaging. Am J Cardiol. 2011;107:126–38.CrossRefGoogle Scholar
  10. 10.
    Dorosz JL, Lezotte DC, Weitzenkamp DA, Allen LA, Salcedo EE. Performance of 3-dimensional echocardiography in measuring left ventricular volumes and ejection fraction: a systematic review and meta-analysis. J Am Coll Cardiol. 2012;15(59):1799–808.CrossRefGoogle Scholar
  11. 11.
    Mor-Avi V, Jenkins C, Kühl HP, et al. Real-time 3-dimensional echocardiographic quantification of left ventricular volumes: multicenter study for validation with magnetic resonance imaging and investigation of sources of error. J Am Coll Cardiol Img. 2008;1:413–23.CrossRefGoogle Scholar
  12. 12.
    Macron L, Lim P, Bensaid A, et al. Single-beat versus miltibeat real-time 3D echocardiography for assessing left ventricular volumes and ejection fraction: a comparison study with cardiac magnetic resonance. Circ Cardiovasc Imaging. 2010;3:450–5.CrossRefGoogle Scholar
  13. 13.
    Tsang W, Salgo IS, Medovedofsky D, et al. Real-time automated transthoracic three-dimensional echocardiographic left heart chamber quantification using an adaptive analytics algorithm. J Am Coll Cardiol Img. 2016;9:769–82.CrossRefGoogle Scholar
  14. 14.
    Medvedofsky D, Mor-Avi V, Amzulescu M, et al. Three-dimensional echocardiographic quantification of the left heart chambers using an automated adaptive analytics algorithm: multicentre validation study. Eur Heart J Cardiovasc Imaging. 2018;19:47–58.CrossRefGoogle Scholar
  15. 15.
    Mevedofsky D, Mor-Avi V, Byku I, et al. Three dimensional echocardiographic automated quantification of left heart chamber volumes using and adptive analytics algorithm: feasibility and impact of image quality in non selected patients. J Am Soc Echocardiogr. 2017;30:879–85.CrossRefGoogle Scholar
  16. 16.
    Bluemke DA, Kronmal RA, Lima JAC, et al. The relationship of left ventricular mass and geometry to incident cardiovascular events: the mesa (multi-ethnic study of atherosclerosis) study. J Am Coll Cardiol. 2008;52:2148–55.CrossRefGoogle Scholar
  17. 17.
    Armstrong AC, Gidding S, Gjesdal O, Wu C, Bluemke DA, Lima JAC. LV mass assessed by echocardiography and CMR, cardiovascular outcomes, and medical practice. J Am Coll Cardiol Img. 2012;5:837–48.CrossRefGoogle Scholar
  18. 18.
    Lang RM, Badano LP, Mor-Avi V, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr. 2015;28:1–39.e14.CrossRefGoogle Scholar
  19. 19.
    Devereaux RB, Alonso DR, Lutas EM, et al. Echocardiographic assessment of left ventricular hypertrophy: comparison to necropsy findings. Am J Cardiol. 1986;57:450–8.CrossRefGoogle Scholar
  20. 20.
    Mor-Avi V, Sugeng L, Weinert L, et al. Fast measurement of left ventricular mass with real-time three-dimensional echocardiography: comparison with magnetic resonance imaging. Circulation. 2004;110:1814–8.CrossRefGoogle Scholar
  21. 21.
    Takeuchi M, Nishikage T, Mor-Avi V, et al. Measurement of left ventricular mass by real-time three-dimensional echocardiography: validation against magnetic resonance and comparison with two-dimensional and m-mode measurements. J Am Soc Echocardiogr. 2008;21:1001–5.CrossRefGoogle Scholar
  22. 22.
    Fukuda S, Watanabe H, Daimon M, et al. Normal values of real-time 3-dimensional echocardiographic parameters in a healthy Japanese population—the JAMP-3d study. Circ J. 2012;76:1177–81.CrossRefGoogle Scholar
  23. 23.
    Mizukoshi K, Takeuchi M, Yasufumi N, et al. Normal values of left ventricular mass index assessed by transthoracic three-dimensional echocardiography. J Am Soc Echocardiogr. 2016;29:51–61.CrossRefGoogle Scholar
  24. 24.
    Muraru D, Badano LP, Peluso D, et al. Comprehensive analysis of left ventricular geometry and function by three-dimensional echocardiography in healthy adults. J Am Soc Echocardiogr. 2013;26:618–28.CrossRefGoogle Scholar
  25. 25.
    Marwick TH, Gillebert TC, Aurigemma G, et al. Recommendations on the use of echocardiography in adult hypertension: a report from the Eropean Association of Cardiovascular Imaging (EACVI) and the American Society of Echocardiography. J Am Soc Echocardiogr. 2015;28:727–54.CrossRefGoogle Scholar
  26. 26.
    Chan SY, Mancini GB, O’Brien DW, Armstrong PW. Novel methodology for echocardiographic quantification of cardiac shape. Can J Cardiol. 1997;13:153–9.PubMedGoogle Scholar
  27. 27.
    Mitchell GF, Lamas GA, Vaughan DE, Pfeffer MA. Left ventricular remodeling in the year after first anterior myocardial infarction: a quantitative analysis of contractile segment lengths and ventricular shape. J Am Coll Cardiol. 1992;19:1136–44.CrossRefGoogle Scholar
  28. 28.
    Maffessanti F, Lang RM, Corsi C, Mor-Avi V, Caiani EG. Feasibility of left ventricular shape analysis from transthoracic real-time 3-D echocardiographic images. Ultrasound Med Biol. 2009;35:1953–62.CrossRefGoogle Scholar
  29. 29.
    Maffessanti F, Sugeng L, Takeuchi M, et al. Feasibility of regional and global left ventricular shape analysis from real-time 3d echocardiography. In: Conference proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society IEEE Engineering in Medicine and Biology Society Annual Conference; 2009. p. 3641–4.Google Scholar
  30. 30.
    Mannaerts HF, van der Heide JA, Kamp O, Stoel MG, Twisk J, Visser CA. Early identification of left ventricular remodelling after myocardial infarction, assessed by transthoracic 3D echocardiography. Eur Heart J. 2004;25:680–7.CrossRefGoogle Scholar
  31. 31.
    Maffessanti F, Caiani EG, Tamborini G, et al. Serial changes in left ventricular shape following early mitral valve repair. Am J Cardiol. 2010;106:836–42.CrossRefGoogle Scholar
  32. 32.
    Opie LH, Commerford PJ, Gersh BJ, Pfeffer MA. Controversies in ventricular remodelling. Lancet. 2006;367:356–67.CrossRefGoogle Scholar
  33. 33.
    Kaku K, Takeuchi M, Otani K, et al. Age- and gender-dependency of left ventricular geometry assessed with real-time three-dimensional transthoracic echocardiography. J Am Soc Echocardiogr. 2011;24:541–7.CrossRefGoogle Scholar
  34. 34.
    Hung CL, Verma A, Uno H, Shin SH, Bourgoun M, Hassanein AH, et al. Longitudinal and circumferential strain rate, left ventricular remodeling, and prognosis after myocardial infarction. J Am Coll Cardiol. 2010;56(22):1812–22.CrossRefGoogle Scholar
  35. 35.
    Di Donato M, Dabic P, Castelvecchio S, et al. Left ventricular geometry in normal and post-anterior myocardial infarction patients: sphericity index and ‘new’ conicity index comparisons. Eur J Cardiothorac Surg. 2006;29(Suppl 1):S225–30.CrossRefGoogle Scholar
  36. 36.
    Salgo IS, Tsang W, Ackerman W, et al. Geometric assessment of regional left ventricular remodeling by three-dimensional echocardiographic shape analysis correlates with left ventricular function. J Am Soc Echocardiogr. 2012;25:80–8.CrossRefGoogle Scholar
  37. 37.
    Mor-Avi V, Lang RM, Badano LP, et al. Current and evolving echocardiographic techniques for the quantitative evaluation of cardiac mechanics: ASE/EAE consensus statement on methodology and indications endorsed by the Japanese Society of Echocardiography. J Am Soc Echocardiogr. 2011;24:277–313.CrossRefGoogle Scholar
  38. 38.
    Plana JC, Galderisi M, Barac A, et al. Expert consensus for multimodality imaging evaluation of adult patients during and after cancer therapy: a report from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging. 2014;15:1063–93.CrossRefGoogle Scholar
  39. 39.
    Geyer H, Caracciolo G, Abe H, et al. Assessment of myocardial mechanics using speckle tracking echocardiography: fundamentals and clinical applications. J Am Soc Echocardiogr. 2010;23:351–69.CrossRefGoogle Scholar
  40. 40.
    Wu VC-C, Takeuchi M, Otani K, et al. Effect of through-plane and twisting motion on left ventricular strain calculation: direct comparison between two-dimensional and three-dimensional speckle-tracking echocardiography. J Am Soc Echocardiogr. 2013;26:1274–81.e1274.CrossRefGoogle Scholar
  41. 41.
    Jasaityte R, Heyde B, D’hooge J. Current state of three-dimensional myocardial strain estimation using echocardiography. J Am Soc Echocardiogr. 2013;26:15–28.CrossRefGoogle Scholar
  42. 42.
    Muraru D, Niero A, Rodriguez-Zanella H, Cherata D, Badano L. Three-dimensional speckle-tracking echocardiography: benefits and limitations of integrating myocardial mechanics with three-dimensional imaging. Cardiovasc Diagn Ther. 2018;8:101–17.CrossRefGoogle Scholar
  43. 43.
    Mondillo S, Galderisi M, Mele D, et al. Speckle-tracking echocardiography: a new technique for assessing myocardial function. J Ultrasound Med. 2011;30:71–83.CrossRefGoogle Scholar
  44. 44.
    Blessberger H, Binder T. NON-invasive imaging: two dimensional speckle tracking echocardiography: basic principles. Heart. 2010;96:716–22.CrossRefGoogle Scholar
  45. 45.
    Buckberg G, Hoffman JI, Mahajan A, et al. Cardiac mechanics revisited: the relationship of cardiac architecture to ventricular function. Circulation. 2008;118:2571–87.CrossRefGoogle Scholar
  46. 46.
    Sengupta PP, Krishnamoorthy VK, Korinek J, et al. Left ventricular form and function revisited: applied translational science to cardiovascular ultrasound imaging. J Am Soc Echocardiogr. 2007;20:539–51.CrossRefGoogle Scholar
  47. 47.
    Reant P, Barbot L, Touche C, et al. Evaluation of global left ventricular systolic function using three-dimensional echocardiography speckle-tracking strain parameters. J Am Soc Echocardiogr. 2012;25:68–79.CrossRefGoogle Scholar
  48. 48.
    Pérez de Isla L, Balcones DV, Fernández-Golfín C, et al. Three-dimensional-wall motion tracking: a new and faster tool for myocardial strain assessment: comparison with two-dimensional-wall motion tracking. J Am Soc Echocardiogr. 2009;22:325–30.CrossRefGoogle Scholar
  49. 49.
    Burns AT, La Gerche A, Prior DL, et al. Left ventricular untwisting is an important determinant of early diastolic function. JACC Cardiovasc Imaging. 2009;2:709–16.CrossRefGoogle Scholar
  50. 50.
    Kaku K, Takeuchi M, Tsang W, et al. Age-related normal range of left ventricular strain and torsion using three-dimensional speckle-tracking echocardiography. J Am Soc Echocardiogr. 2014;7:55–64.CrossRefGoogle Scholar
  51. 51.
    Muraru D, Cucchini U, Mihăilă S, et al. Left ventricular myocardial strain by three-dimensional speckle-tracking echocardiography in healthy subjects: reference values and analysis of their physiologic and technical determinants. J Am Soc Echocardiogr. 2014;27:858–71.CrossRefGoogle Scholar
  52. 52.
    Gayat E, Ahmad H, Weinert L, Lang RM, Mor-Avi V. Reproducibility and inter-vendor variability of left ventricular deformation measurements by three-dimensional speckle-tracking echocardiography. J Am Soc Echocardiogr. 2011;24:878–85.CrossRefGoogle Scholar
  53. 53.
    Badano LP, Cucchini U, Muraru D, Al Nono O, Sarais C, Iliceto S. Use of three-dimensional speckle tracking to assess left ventricular myocardial mechanics: inter-vendor consistency and reproducibility of strain measurements. Eur Heart J Cardiovasc Imaging. 2013;14:285–93.CrossRefGoogle Scholar
  54. 54.
    Hayat D, Kloeckner M, Nahum J, et al. Comparison of real-time three-dimensional speckle tracking to magnetic resonance imaging in patients with coronary heart disease. Am J Cardiol. 2012;109:180–6.CrossRefGoogle Scholar
  55. 55.
    Marwick TH, Leano RL, Brown J, et al. Myocardial strain measurement with 2-dimensional speckle-tracking echocardiography: definition of normal range. JACC Cardiovasc Imaging. 2009;2:80–4.CrossRefGoogle Scholar
  56. 56.
    Leitman M, Lysyansky P, Sidenko S, et al. Two-dimensional strain-a novel software for real-time quantitative echocardiographic assessment of myocardial function. J Am Soc Echocardiogr. 2004;17:1021–9.CrossRefGoogle Scholar
  57. 57.
    Elen A, Choi HF, Loeckx D, et al. Three-dimensional cardiac strain estimation using spatio-temporal elastic registration of ultrasound images: a feasibility study. IEEE Trans Med Imaging. 2008;27:1580–91.CrossRefGoogle Scholar
  58. 58.
    Negishi K, Negishi T, Agler DA, et al. Role of temporal resolution in selection of the appropriate strain technique for evaluation of subclinical myocardial dysfunction. Echocardiography. 2012;29:334–9.CrossRefGoogle Scholar
  59. 59.
    Jasaityte R, Heyde B, Ferferieva V, et al. Comparison of a new methodology for the assessment of 3D myocardial strain from volumetric ultrasound with 2D speckle tracking. Int J Cardiovasc Imaging. 2012;28:1049–60.CrossRefGoogle Scholar
  60. 60.
    Tanaka H, Hara H, Saba S, Gorcsan J. Usefulness of three-dimensional speckle tracking strain to quantify dyssynchrony and the site of latest mechanical activation. Am J Cardiol. 2010;105:235–42.CrossRefGoogle Scholar
  61. 61.
    Tanaka H, Hara H, Adelstein EC, Schwartzman D, Saba S, Gorcsan J. Comparative mechanical activation mapping of RV pacing to LBBB by 2D and 3D speckle tracking and association with response to resynchronization therapy. J Am Coll Cardiol Img. 2010;3:461–71.CrossRefGoogle Scholar
  62. 62.
    Thebault C, Donal E, Bernard A, et al. Real-time three-dimensional speckle tracking echocardiography: a novel technique to quantify global left ventricular mechanical dyssynchrony. Eur J Echocardiogr. 2011;12:26–32.CrossRefGoogle Scholar
  63. 63.
    Matsumoto K, Tanaka H, Kaneko A, et al. Contractile reserve assessed by three-dimensional global circumferential strain as a predictor of cardiovascular events in patients with idiopathic dilated cardiomyopathy. J Am Soc Echocardiogr. 2012;25:1299–308.CrossRefGoogle Scholar
  64. 64.
    Kearney LG, Lu K, Ord M, et al. Global longitudinal strain is a strong independent predictor of all-cause mortality in patients with aortic stenosis. Eur Heart J. 2012;13:827–33.Google Scholar
  65. 65.
    Yingchoncharoen T, Gibby C, Rodriguez LL, Grimm RA, Marwick TH. Association of myocardial deformation with outcome in asymptomatic aortic stenosis with normal ejection fraction. Circ Cardiovasc Imaging. 2012;5:719–25.CrossRefGoogle Scholar
  66. 66.
    Nagata Y, Takeuchi M, Wu VC-C, et al. Prognostic value of LV deformation parameters using 2D and 3D speckle-tracking echocardiography in asymptomatic patients with severe aortic stenosis and preserved LV ejection fraction. J Am Coll Cardiol Img. 2015;8:235–45.CrossRefGoogle Scholar
  67. 67.
    Bae RY, Belohlavek M, Tanabe K, Greenleaf JF, Seward JB. Rapid three-dimensional myocardial contrast echocardiography: volumetric quantitation of nonperfused myocardium after intravenous contrast administration. Echocardiography. 1999;16:357–65.CrossRefGoogle Scholar
  68. 68.
    Yao J, De Castro S, Delabays A, Masani N, Udelson JE, Pandian NG. Bulls-eye display and quantitation of myocardial perfusion defects using three-dimensional contrast echocardiography. Echocardiography. 2001;18:581–8.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Masaaki Takeuchi
    • 1
    Email author
  • Karima Addetia
    • 2
  • Roberto M. Lang
    • 2
  1. 1.Department of Laboratory and Transfusion MedicineUniversity of Occupational and Environmental Health Hospital, School of MedicineKitakyushuJapan
  2. 2.Noninvasive Cardiac Imaging Laboratories, Department of Medicine/Section of CardiologyUniversity of Chicago Medical CenterChicagoUSA

Personalised recommendations