Advertisement

The Role of 3DE in the Evaluation of Cardiac Masses

  • Francesco Fulvio FaletraEmail author
  • Romina Murzilli
  • Laura Anna Leo
  • Denisa Muraru
Chapter

Abstract

Echocardiography is the most frequently used imaging modality to assess intra-cardiac masses. Two-dimensional echocardiography uses orthogonal tomographic planes obtained from several acoustic windows to try to mentally reconstruct a model of how the mass would actually appear in three dimensions and how it would relate to the adjacent cardiac structures. Three-dimensional transthoracic and transesophageal echocardiography have revolutionized the echocardiographic assessment of intracardiac masses. A single acquisition of a three-dimensional data set can be post-processed to show the actual size and shape of the mass and characterize its volume, location, point of attachment, relationships with adjacent structures empowering the echocardiographer with a new level of confidence in the diagnosis, follow-up and management of patients with intracardiac masses.

In the first part of the chapter, we will describe how the most frequent benign and malign tumors appear on 3DE imaging. The second part of the chapter will cover non-tumor masses, in particular thrombi and vegetations. The last part will describe some normal intracardiac structures that may protrude in the heart cavities and appear as cardiac masses when exuberant.

Keywords

Intracardiac masses Primary cardiac tumors Secondary cardiac tumors Myxoma Lamb’s excrescences Non-tumor masses 

Supplementary material

Video 24.1a

Volume rendering of left atrial myxoma (AVI 4787 kb)

Video 24.1b

Color volume rendering of left atrial myxoma (AVI 1555 kb)

Video 24.1c

Biplane display of left atrial myxoma (AVI 27355 kb)

Video 24.2a

Conventional 4-chamber two-dimensional view of left atrial myxoma occluding the mitral orifice in diastole and falling deep in the left ventricle (AVI 26256 kb)

Video 24.2b

Transthoracic 3DE and volume rendering of left atrial mixomaCardiac massesprimary cardiac tumorsmixoma visualized in longitudinal cut plane to show the point of attachment to interatrial septum and its prolapse into the left ventricle through the mitral orifice (AVI 10453 kb)

Video 24.2c

Transthoracic 3DE and volume rendering of left atrial mixomaCardiac massesprimary cardiac tumorsmixoma visualized from left ventricular perspective, using a transversal cut plane, to examine its protrusion through the mitral annulus (AVI 15478 kb)

Video 24.2d

Transthoracic 3DE and volume rendering of left atrial mixoma visualized from the atrial perspective using a transversal cut plane to show the large stalk and the point of attachment to interatrial septum (AVI 14181 kb)

Video 24.3

Two-dimensional echocardiography of left atrial myxoma with irregular shape. Although the diagnosis of myxoma is unquestionable, the precise size and shape of the tumor is difficult to define since during the cardiac cycle parts of the tumor appear and disappear as it moves through the echocardiographic plane. Ao aorta, LA left atrium, LV left ventricle (AVI 1873 kb)

Video 24.4

Transesophageal 3DE image showing volume renderingDisplayvolume rendering display of the same case of Video 24.3. The tumor seen from above to show the margins of the tumor attached on the atrial wall and its spatial relationships with the mitral valve (AVI 3231 kb)

Video 24.5

Transesophageal 3DE volume rendering of a myxomas with multiple excrescencies (AVI 2186 kb)

Video 24.6a

Classic transthoracic two-dimensional transesophageal echocardiography appearance of papillary fibroelastoma attached on the endocardium of the aortic root (AVI 31600 kb)

Video 24.6b

Transesophageal 3DE volume rendering of papillary fibroelastoma attached on the endocardium of the aortic root providing a better assessment of its shape, position (near the sino-tubular junction on the commissure between the non-coronary and left coronary leaflets (AVI 15218 kb)

Video 24.6c

Transesophageal 3DE volume rendering of papillary fibroelastoma attached on the endocardium of the aortic root showing the thin attachment of the mass to the aortic root (AVI 19391 kb)

Video 24.7a

Transthoracic 3DE data set obtained from a subcostal approach with a longitudinal cut of the inferior vena cava to show a renal cell carcinoma emerging from the inferior vena cava (AVI 3167 kb)

Video 24.7b

Transthoracic 3DE data set obtained from a subcostal approach with a transversal cut of the inferior vena cava to show a renal cell carcinoma emerging from the inferior vena cava. IVC inferior vena cava, LA left atrium, LV left ventricle, RA right atrium, RV right ventricle (AVI 4544 kb)

Video 24.8

Transthoracic 3DE in a patient with left ventricular thrombi (AVI 5606 kb)

Video 24.9

Transesophageal 3DE volume rendering of a huge thrombus originating form superior vena cava, which appears obstructed, and protruding into the right atrium. CT crista terminalis, RAA right atrial appendage, SVC superior vena cava, Th thrombus (AVI 1987 kb)

Video 24.10

Transesophageal 3DE volume rendering of a large endocarditis vegetation attached at the ventricular surface of the left coronary aortic leaflet (AVI 2179 kb)

Video 24.11a

Two-dimensional transthoracic 4-chamber view showing a crista terminalis that may easily misdiagnosed for a tumor or thrombus attached to the superior wall of right atrium (AVI 14971 kb)

Video 24.11b

Transthoracic 3DE showing a terminal crest extending from the superior vena cava (not seen in the image) towards the tricuspid orifice. IAS interatrial septum, LA left atrium, LV left ventricle, RV right ventricle, SVC superior vena cava, TC terminal crest (AVI 5179 kb)

References

  1. 1.
    Lam KY, Dickens P, Chan AC. Tumors of the heart. A 20-year experience with a review of 12,485 consecutive autopsies. Arch Pathol Lab Med. 1993;117:1027–31.PubMedGoogle Scholar
  2. 2.
    Burke A, Virmani R. Tumors of the heart and great vessels. In: Atlas of tumor pathology. 3rd ed. Washington, DC: Armed Forces Institute of Pathology; 1996. p. 79–90.Google Scholar
  3. 3.
    Salcedo EE, Cohen GI, White RD, Davison MB. Cardiac tumors: diagnosis and management. Curr Probl Cardiol. 1992;17:73–137.CrossRefGoogle Scholar
  4. 4.
    Mugge A, Daniel WG, Haverich A, Lichtlen PR. Diagnosis of noninfective cardiac mass lesions by two-dimensional echocardiography. Comparison of the transthoracic and transesophageal approaches. Circulation. 1991;3:70–8.CrossRefGoogle Scholar
  5. 5.
    King TW. On simple vascular growths in the left auricle of the heart. Lancet. 1845;2:428–9.CrossRefGoogle Scholar
  6. 6.
    Goldberg HP, Glenn F, Dotter CT, Steinberg I. Myxoma of the left atrium: diagnosis made during life with operative and postmortem findings. Circulation. 1952;6:762–7.CrossRefGoogle Scholar
  7. 7.
    HA MA Jr, Fenoglio JJ Jr. Tumors of the cardiovascular system. Atlas of tumor pathology. 2nd series. Fascicle 15. Washington, DC: Armed Forces Institute of Pathology; 1978. p. 1–20.Google Scholar
  8. 8.
    Prichard RW. Tumors of the heart: review of the subject and report of one hundred and fifty cases. Arch Pathol. 1951;51:98–128.Google Scholar
  9. 9.
    Lie JT. The identity and histogenesis of cardiac myxomas: a controversy put to rest. Arch Pathol Lab Med. 1989;113:724–6.PubMedGoogle Scholar
  10. 10.
    Klarich KW, Enriquez-Sarano M, Gura GM, Edwards WD, Tajik AJ, Seward JB. Papillary fibroelastoma: echocardiographic characteristics for diagnosis and pathologic correlation. J Am Coll Cardiol. 1997;30(3):784–90.CrossRefGoogle Scholar
  11. 11.
    Sun JP, Asher CR, Yang XS, Cheng GG, Scalia GM, Massed AG, et al. Clinical and echocardiographic characteristics of papillary fibroelastomas: a retrospective and prospective study in 162 patients. Circulation. 2001;103(22):2687–93.CrossRefGoogle Scholar
  12. 12.
    Goldberg AD, Blankstein R, Padera R. Tumors metastatic to the heart. Circulation. 2013;128:1790–4.CrossRefGoogle Scholar
  13. 13.
    Keren A, Goldberg S, Gottlieb S, Klein J, Schuger C, Medina A, et al. Natural history of left ventricular thrombi: their appearance and resolution in the post-hospitalization period of acute myocardial infarction. J Am Coll Cardiol. 1990;15:790–800.CrossRefGoogle Scholar
  14. 14.
    Vaitkus PT, Barnathan ES. Embolic potential, prevention and management of mural thrombus complicating anterior myocardial infarction: a meta-analysis. J Am Coll Cardiol. 1994;22(4):1004–9.CrossRefGoogle Scholar
  15. 15.
    Haugland JM, Asinger RW, Mikell FL, Elsperger J, Hodges M. Embolic potential of left ventricular thrombi detected by two-dimensional echocardiography. Circulation. 1984;70:588–98.CrossRefGoogle Scholar
  16. 16.
    Oginosawa Y, Abe H, Nakashima Y. The incidence and risk factors for venous obstruction after implantation of transvenous pacing leads. Pacing Clin Electrophysiol. 2002;25:1605–11.CrossRefGoogle Scholar
  17. 17.
    Moreillon P, Que YA. Infective endocarditis. Lancet. 2004;363:139–49.CrossRefGoogle Scholar
  18. 18.
    Correa de Sa DD, Tleyjeh IM, Anavekar NS, Schultz JC, Thomas JM, Lahr BD, et al. Epidemiological trends of infective endocarditis: a population-based study in Olmsted County, Minnesota. Mayo Clin Proc. 2010;85:422–6.CrossRefGoogle Scholar
  19. 19.
    Werdan K, Dietz S, Löffler B, Niemann S, Bushnaq H, Silber RE, et al. Mechanisms of infective endocarditis: pathogen-host interaction and risk states. Nat Rev Cardiol. 2014;11:35–50.CrossRefGoogle Scholar
  20. 20.
    Prendergast BD. Diagnostic criteria and problems in infective endocarditis. Heart. 2004;90:611–3.CrossRefGoogle Scholar
  21. 21.
    Li JS Sexton DJ, Mick N, Nettles R, Fowler VG Jr, Ryan T, et al. Proposed modifications to the Duke criteria for the diagnosis of infective endocarditis. Clin Infect Dis. 2000;30:633–8.CrossRefGoogle Scholar
  22. 22.
    Habib G, Badano L, Tribouilloy C, Vilacosta I, Zamorano JL, Galderisi M, et al. Recommendations for the practice of echocardiography in infective endocarditis. Eur J Echocardiogr. 2010;11:202–19.CrossRefGoogle Scholar
  23. 23.
    Tunick PA, Perez JL, Kronzon I. Protruding atheromas in the thoracic aorta and systemic embolization. Ann Intern Med. 1991;115:423–7.CrossRefGoogle Scholar
  24. 24.
    Amarenco P, Cohen A, Tzourio C. Atherosclerotic disease of the aortic arch and the risk of ischemic stroke. N Engl J Med. 1994;331:1474–9.CrossRefGoogle Scholar
  25. 25.
    Jones EF, Kalman JM, Calafiore P. Proximal aortic atheroma: an independent risk factor for cerebral ischemia. Stroke. 1995;26:218–24.PubMedGoogle Scholar
  26. 26.
    Harloff A, Simon J, Brendecke S, Assefa D, Helbing T, Frydrychowicz A, et al. Complex plaques in the proximal descending aorta. An underestimated embolic source of stroke. Stroke. 2010;41:1145–50.CrossRefGoogle Scholar
  27. 27.
    Keeley EC, Grines CL. Scraping of aortic debris by coronary guide catheters. A prospective evaluation of 1000 cases. J Am Coll Cardiol. 1998;32:1861–5.CrossRefGoogle Scholar
  28. 28.
    Prior JT. Lipomatous hypertrophy of the cardiac interatrial septum. A lesion resembling hibernoma, lipoblastomatosis and infiltrating lipoma. Arch Pathol. 1964;78:11–5.PubMedGoogle Scholar
  29. 29.
    Faletra FF, Nucifora G, Ho SY. Imaging the atrial septum using real-time three-dimensional transesophageal echocardiography: technical tips, normal anatomy, ad its role in transseptal puncture. J Am Soc Echocardiogr. 2011;24:593–9.CrossRefGoogle Scholar
  30. 30.
    Silbiger JJ, Bazaz R, Trost R. Lipomatous hypertrophy of the interatrial septum revisited. J Am Soc Echocardiogr. 2010;23:789–90.CrossRefGoogle Scholar
  31. 31.
    Cabrera JA, Ho SY, Climent V, Sánchez-Quintana D. The architecture of the left lateral atrial wall: a particular anatomic region with implications for ablation of atrial fibrillation. Eur Heart J. 2008;29:356–62.CrossRefGoogle Scholar
  32. 32.
    Faletra FF, HO SY, Regoly F, Acena M, Auricchio A. Real-time three-dimensional transoesophageal echocardiography in imaging key anatomical structures of the left atrium: potential role during atrial fibrillation ablation. Heart. 2013;99:133–42.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Francesco Fulvio Faletra
    • 1
    Email author
  • Romina Murzilli
    • 1
  • Laura Anna Leo
    • 1
  • Denisa Muraru
    • 2
  1. 1.Department of CardiologyFondazione Cardiocentro TicinoLuganoSwitzerland
  2. 2.University of Milano-Bicocca, and Istituto Auxologico Italiano, IRCCS, San Luca HospitalMilanoItaly

Personalised recommendations