Functional Tricuspid Regurgitation

  • Jae-Kwan SongEmail author
  • Denisa Muraru
  • Andrada-Camelia Guta
  • Luigi P. Badano


Functional tricuspid regurgitation (FTR) is an important prognosticator in many cardiac diseases. Although surgical intervention has been being frequently applied, the success of current repair techniques is often uncertain and observation of residual or progressive FTR after tricuspid valve annuloplasty is not uncommon. Standard views obtained with two-dimensional transthoracic echocardiography, due to its inherent limitations, failed to evaluate geometric changes associated with FTR accurately. Transthoracic three-dimensional echocardiography (3DE) has revolutionized our approach for better understanding the 3D geometry of the tricuspid annulus both in normal subjects and in patients with FTR. The tricuspid annulus was found to be a non-planar structure with a distinct bimodal or saddle-shaped pattern like the mitral annulus, whereas, in patients with FTR, the annular area was larger and the annulus was flatter with markedly decreased annular height, which diminished the saddle shape. Potential contribution of right ventricular or right atrial geometric changes to the tricuspid annulus remodeling in FTR can also be evaluated using transthoracic 3DE data sets. 3DE, performed before and after the tricuspid annuloplasty, can provide an excellent opportunity to evaluate geometric changes associated with persistent or progressive FTR after the tricuspid annuloplasty. The current surgical approach can achieve tricuspid annulus size reduction at the expense of aggravation of leaflet tenting, which can explain suboptimal surgical results. 3DE color Doppler images can be adequately used for cross-sectional images of the vena contracta using multiplanar reconstruction images, which is useful to assess the severity of FTR. Thus, comprehensive and accurate evaluation of FTR is possible using 3DE and its impact to improve clinical outcome should be further tested.


Functional tricuspid regurgitation 3-Dimensional echocardiography Tricuspid annulus Leaflet tethering Pathophysiology 


  1. 1.
    Badano LP, Muraru D, Enriquez-Sarano M. Assessment of functional tricuspid regurgitation. Eur Heart J. 2013;34(25):1875–85.CrossRefGoogle Scholar
  2. 2.
    Nath J, Foster E, Heidenreich PA. Impact of tricuspid regurgitation on long-term survival. J Am Coll Cardiol. 2004;43:405–9.CrossRefGoogle Scholar
  3. 3.
    Calafiore AM, Gallina S, Iaco AL, et al. Mitral valve surgery for functional mitral regurgitation: should moderate-or-more tricuspid regurgitation be treated? a propensity score analysis. Ann Thorac Surg. 2009;87:698–703.CrossRefGoogle Scholar
  4. 4.
    Varadarajan P, Pai RG. Prognostic implications of tricuspid regurgitation in patients with severe aortic regurgitation: results from a cohort of 756 patients. Interact Cardiovasc Thorac Surg. 2012;14:580–4.CrossRefGoogle Scholar
  5. 5.
    Mascherbauer J, Kammerlander AA, Marzluf BA, Graf A, Kocher A, Bonderman D. Prognostic impact of tricuspid regurgitation in patients undergoing aortic valve surgery for aortic stenosis. PLoS One. 2015;10:e0136024.CrossRefGoogle Scholar
  6. 6.
    Dreyfus GD, Corbi PJ, Chan KM, Bahrami T. Secondary tricuspid regurgitation or dilatation: which should be the criteria for surgical repair? Ann Thorac Surg. 2005;79:127–32.CrossRefGoogle Scholar
  7. 7.
    McCarthy PM, Sales VL. Evolving indications for tricuspid valve surgery. Curr Treat Options Cardiovasc Med. 2010;12:587–97.CrossRefGoogle Scholar
  8. 8.
    Bernal JM, Gutierrez-Morlote J, Llorca J, San Jose JM, Morales D, Revuelta JM. Tricuspid valve repair: an old disease, a modern experience. Ann Thorac Surg. 2004;78:2069–74.CrossRefGoogle Scholar
  9. 9.
    McCarthy PM, Bhudia SK, Rajeswaran J, et al. Tricuspid valve repair:durability and risk factors for failure. J Thorac Cardiovasc Surg. 2004;127:674–85.CrossRefGoogle Scholar
  10. 10.
    Fukuda S, Song JM, Gillinov AM, et al. Tricuspid valve tethering predicts residual tricuspid regurgitation after tricuspid annuloplasty. Circulation. 2005;111:975–9.CrossRefGoogle Scholar
  11. 11.
    Muraru D, Hahn RT, Soliman IA, Faletra F, Basso C, Badano LP. Three-dimensional echocardiography in imaging the tricuspid valve. JACC Cardiovasc Imaging. 2019;12:500–15.Google Scholar
  12. 12.
    Muraru D, Surkova E, Badano LP. Revisit of functional tricuspid regurgitation; current trends in the diagnosis and management. Korean Circ J. 2016;46:443–55.CrossRefGoogle Scholar
  13. 13.
    Badano LP, Agricola E, Perez de Isla L, Gianfagna P, Zamorano JL. Evaluation of the tricuspid valve morphology and function by transthoracic real-time three-dimensional echocardiography. Eur J Echocardiogr. 2009;10:477–84.CrossRefGoogle Scholar
  14. 14.
    Spinner EM, Shannon P, Buice D, et al. In vitro characterization of the mechanisms responsible for functional tricuspid regurgitation. Circulation. 2011;124:920–9.CrossRefGoogle Scholar
  15. 15.
    Nemoto N, Lesser JR, Pedersen WR, et al. Pathogenic structural heart changes in early tricuspid regurgitation. J Thorac Cardiovasc Surg. 2015;150:323–30.CrossRefGoogle Scholar
  16. 16.
    Mutlak D, Lessick J, Reisner SA, Aronson D, Dabbah S, Agmon Y. Echocardiography-based spectrum of severe tricuspid regurgitation: the frequency of apparently idiopathic tricuspid regurgitation. J Am Soc Echocardiogr. 2007;20:405–8.CrossRefGoogle Scholar
  17. 17.
    Najib MQ, Vinales KL, Vittala SS, Challa S, Lee HR, Chaliki HP. Predictors for the development of severe tricuspid regurgitation with anatomically normal valve in patients with atrial fibrillation. Echocardiography. 2012;29:140–6.CrossRefGoogle Scholar
  18. 18.
    Utsunomiya H, Itabashi Y, Mihara H, et al. Functional tricuspid regurgitation caused by chronic atrial fibrillation: a real-time 3-dimensional transesophageal echocardiography study. Circ Cardiovasc Imaging. 2017;10(1). pii: e004897.Google Scholar
  19. 19.
    Prihadi EA, Delgado V, Hahn RT, Leipsic J, Min JK, Bax JJ. Imaging needs in novel transcatheter tricuspid valve interventions. JACC Cardiovasc Imaging. 2018;11:736–54.CrossRefGoogle Scholar
  20. 20.
    Afilalo J, Grapsa J, Nihoyannopoulos P, et al. Leaflet area as a determinant of tricuspid regurgitation severity in patients with pulmonary hypertension. Circ Cardiovasc Imaging. 2015;8(5). pii: e002714.Google Scholar
  21. 21.
    Kim H, Kim IC, Yoon HJ, et al. Prognostic usefulness of tricuspid annular diameter for cardiovascular events in patients with tricuspid regurgitation of moderate to severe degree. Am J Cardiol. 2018;121:1343–50.CrossRefGoogle Scholar
  22. 22.
    Fukuda S, Gillinov AM, Song JM, et al. Echocardiographic insights into atrial and ventricular mechanisms of functional tricuspid regurgitation. Am Heart J. 2006;152:1208–14.CrossRefGoogle Scholar
  23. 23.
    Topilsky Y, Khanna A, Le Tourneau T, et al. Clinical context and mechanism of functional tricuspid regurgitation in patients with and without pulmonary hypertension. Circ Cardiovasc Imaging. 2012;5:314–23.CrossRefGoogle Scholar
  24. 24.
    Song JM, Jang MK, Kim YJ, Kim DH, Kang DH, Song JK. Right ventricular remodeling determines tricuspid valve geometry and the severity of functional tricuspid regurgitation: a real-time 3-dimensional echocardiography study. Korean Circ J. 2010;40:448–53.CrossRefGoogle Scholar
  25. 25.
    Rogers JH, Bolling SF. The tricuspid valve: current perspective and evolving management of tricuspid regurgitation. Circulation. 2009;119:2718–25.CrossRefGoogle Scholar
  26. 26.
    Sukmawan R, Watanabe N, Ogasawara Y, et al. Geometric changes of tricuspid valve tenting in tricuspid regurgitation secondary to pulmonary hypertension quantified by novel system with transthoracic real-time 3-dimensional echocardiography. J Am Soc Echocardiogr. 2007;20:470–6.CrossRefGoogle Scholar
  27. 27.
    Park YH, Song JM, Lee EY, Kim YJ, Kang DH, Song JK. Geometric and hemodynamic determinants of functional tricuspid regurgitation: a real-time three-dimensional echocardiography study. Int J Cardiol. 2008;124:160–5.CrossRefGoogle Scholar
  28. 28.
    Dreyfus GD, Martin RP, Chan KM, Dulguerov F, Alexandrescu C. Functional tricuspid regurgitation: a need to revise our understanding. J Am Coll Cardiol. 2015;65:2331–6.CrossRefGoogle Scholar
  29. 29.
    Nishimura RA, Otto CM, Bonow RO, et al. 2014 AHA/ACC guideline for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2014;63:e57–185.CrossRefGoogle Scholar
  30. 30.
    Baumgartner H, Falk V, Bax JJ, et al. 2017 ESC/EACTS guidelines for the management of valvular heart diseases. Eur Heart J. 2017;38(36):2739–91.CrossRefGoogle Scholar
  31. 31.
    Ton-Nu TT, Levine RA, Handschumacher MD, et al. Geometric determinants of functional tricuspid regurgitation:insights from 3-dimensional echocardiography. Circulation. 2006;114:143–9.CrossRefGoogle Scholar
  32. 32.
    Fukuda S, Saracino G, Matsumura Y, et al. Three-dimensional geometry of the tricuspid annulus in healthy subjects and in patients with functional tricuspid regurgitation: a real-time, 3-dimensional echocardiographic study. Circulation. 2006;114:I492–8.PubMedGoogle Scholar
  33. 33.
    Dreyfus J, Durand-Viel G, Raffoul R, et al. Comparison of 2-dimensional, 3-dimensional, and surgical measurements of the tricuspid annulus size: clinical implications. Circ Cardiovasc Imaging. 2015;8:e003241.CrossRefGoogle Scholar
  34. 34.
    Stankovic I, Daraban AM, Jasaityte R, Neskovic AN, Claus P, Voigt JU. Incremental value of the en face view of the tricuspid valve by two-dimensional and three-dimensional echocardiography for accurate identification of tricuspid valve leaflets. J Am Soc Echocardiogr. 2014;27:376–84.CrossRefGoogle Scholar
  35. 35.
    Anwar AM, Geleijnse ML, Ten Cate FJ, Meijboom FJ. Assessment of tricuspid valve annulus size, shape and function using real-time three-dimensional echocardiography. Interact Cardiovasc Thorac Surg. 2006;5:683–7.CrossRefGoogle Scholar
  36. 36.
    Anwar AM, Soliman OI, Nemes A, van Geuns RJ, Geleijnse ML, Ten Cate FJ. Value of assessment of tricuspid annulus: real-time three-dimensional echocardiography and magnetic resonance imaging. Int J Cardiovasc Imaging. 2007;23:701–5.CrossRefGoogle Scholar
  37. 37.
    Spinner EM, Lerakis S, Higginson J, et al. Correlates of tricuspid regurgitation as determined by 3D echocardiography: pulmonary arterial pressure, ventricle geometry, annular dilatation, and papillary muscle displacement. Circ Cardiovasc Imaging. 2012;5:43–50.CrossRefGoogle Scholar
  38. 38.
    van Rosendael PJ, Joyce E, Katsanos S, et al. Tricuspid valve remodelling in functional tricuspid regurgitation: multidetector row computed tomography insights. Eur Heart J Cardiovasc Imaging. 2016;17:96–105.PubMedGoogle Scholar
  39. 39.
    Takaoka H, Funabashi N, Kataoka A, et al. Utilities of 320-slice computed-tomography for evaluation of tricuspid valve annular diameter before tricuspid-valve-plasty compared with the direct-measurement of tricuspid valve annular diameter during open heart-surgery. Int J Cardiol. 2013;168:2889–93.CrossRefGoogle Scholar
  40. 40.
    Kabasawa M, Kohno H, Ishizaka T, et al. Assessment of functional tricuspid regurgitation using 320-detector-row multislice computed tomography: risk factor analysis for recurrent regurgitation after tricuspid annuloplasty. J Thorac Cardiovasc Surg. 2014;147:312–20.CrossRefGoogle Scholar
  41. 41.
    Maffessanti F, Gripari P, Pontone G, et al. Three-dimensional dynamic assessment of tricuspid and mitral annuli using cardiovascular magnetic resonance. Eur Heart J Cardiovasc Imaging. 2013;14:986–95.CrossRefGoogle Scholar
  42. 42.
    Tei C, Pilgrim JP, Shah PM, Ormiston JA, Wong M. The tricuspid valve annulus: study of size and motion in normal subjects and in patients with tricuspid regurgitation. Circulation. 1982;66:665–71.CrossRefGoogle Scholar
  43. 43.
    Addetia K, Muraru D, Veronesi F, et al. 3-Dimensional Echocardiographic Analysis of the Tricuspid Annulus Provides New Insights Into Tricuspid Valve Geometry and Dynamics. JACC Cardiovasc Imaging. 2017;10. pii: S1936-878X(17)30902-6.Google Scholar
  44. 44.
    Miglioranza MH, Mihaila S, Muraru D, Cucchini U, Iliceto S, Badano LP. Variability of tricuspid annulus diameter measurement in healthy volunteers. JACC Cardiovasc Imaging. 2015;8:864–6.CrossRefGoogle Scholar
  45. 45.
    Joint Task Force on the Management of Valvular Heart Disease of the European Society of Cardiology (ESC); European Association for Cardio-Thoracic Surgery (EACTS), Vahanian A, Alfieri O, Andreotti F, Antunes MJ, Barón-Esquivias G, Baumgartner H, et al. Guidelines on the management of valvular heart disease (version 2012). Eur Heart J. 2012;33:2451–96.CrossRefGoogle Scholar
  46. 46.
    Miglioranza MH, Mihaila S, Muraru D, Cucchini U, Iliceto S, Badano LP. Dynamic changes in tricuspid annular diameter measurement in relation to the echocardiographic view and timing during the cardiac cycle. J Am Soc Echocardiogr. 2015;28:226–35.CrossRefGoogle Scholar
  47. 47.
    Lancellotti P, Moura L, Pierard LA, et al. European Association of Echocardiography recommendations for the assessment of valvular regurgitation. Part 2: mitral and tricuspid regurgitation (native valve disease). Eur J Echocardiogr. 2010;11:307–32.CrossRefGoogle Scholar
  48. 48.
    Min SY, Song JM, Kim JH, et al. Geometric changes after tricuspid annuloplasty and predictors of residual tricuspid regurgitation: a real-time three-dimensional echocardiography study. Eur Heart J. 2010;31:2871–80.CrossRefGoogle Scholar
  49. 49.
    Zoghbi WA, Adams D, Bonow RO, et al. Recommendations for noninvasive evaluation of native valvular regurgitation: a report from the American Society of Echocardiography Developed in Collaboration with the Society for Cardiovascular Magnetic Resonance. J Am Soc Echocardiogr. 2017;30:303–71.CrossRefGoogle Scholar
  50. 50.
    Tribouilloy C, Enriquez-Sarano M, Bailey K, Tajik A, Seward J. Quantification of tricuspid regurgitation by measuring the width of the vena contracta with Doppler color flow imaging: a clinical study. J Am Coll Cardiol. 2000;36:472–8.CrossRefGoogle Scholar
  51. 51.
    Velayudhan DE, Brown TM, Nanda NC, et al. Quantification of tricuspid regurgitation by live three-dimensional transthoracic echocardiographic measurements of vena contracta area. Echocardiography. 2006;23:793–800.CrossRefGoogle Scholar
  52. 52.
    Chen TE, Kwon SH, Enriquez-Sarano M, Wong BF, Mankad SV. Three-dimensional color Doppler echocardiographic quantification of tricuspid regurgitation orifice area: comparison with conventional two-dimensional measures. J Am Soc Echocardiogr. 2013;26:1143–52.CrossRefGoogle Scholar
  53. 53.
    Hahn RT, Thomas JD, Khalique OK, Cavalcante JL, Praz F, Zoghbi WA. Imaging assessment of tricuspid regurgitation severity. JACC Cardiovasc Imaging. 2019;12:469–90.PubMedGoogle Scholar
  54. 54.
    Rivera JM, Vandervoort PM, Mele D, et al. Quantification of tricuspid regurgitation by means of the proximal flow convergence method: a clinical study. Am Heart J. 1994;127:1354–62.CrossRefGoogle Scholar
  55. 55.
    Cawley PJ, Hamilton-Craig C, Owens DS, et al. Prospective comparison of valve regurgitation quantitation by cardiac magnetic resonance imaging and transthoracic echocardiography. Circ Cardiovasc Imaging. 2013;6:48–57.CrossRefGoogle Scholar
  56. 56.
    Hahn RT, Zamorano JL. The need for a new tricuspid regurgitation grading scheme. Eur Heart J Cardiovasc Imaging. 2017;18:1342–3.CrossRefGoogle Scholar
  57. 57.
    Topilsky Y, Tribouilloy C, Michelena HI, Pislaru S, Mahoney DW, Enriquez-Sarano M. Pathophysiology of tricuspid regurgitation. Quantitative Doppler echocardiographic assessment of respiratory dependence. Circulation. 2010;122:1505–13.CrossRefGoogle Scholar
  58. 58.
    Haddad F, Hunt SA, Rosenthal DN, Murphy DJ. Right ventricular function in cardiovascular disease, part I: anatomy, physiology, aging, and functional assessment of the right ventricle. Circulation. 2008;117:1436–48.CrossRefGoogle Scholar
  59. 59.
    Mutlak D, Carasso S, Lessick J, Aronson D, Reisner SA, Agmon Y. Excessive respiratory variation in tricuspid regurgitation systolic velocities in patients with severe tricuspid regurgitation. Eur Heart J Cardiovasc Imaging. 2013;14:957–62.CrossRefGoogle Scholar
  60. 60.
    Mutlak D, Aronson D, Lessick J, Reisner SA, Dabbah S, Agmon Y. Functional tricuspid regurgitation in patients with pulmonary hypetension: is pulmonary artery pressure the only determinant of regurgitation severity? Chest. 2009;135:115–21.CrossRefGoogle Scholar
  61. 61.
    Song JM, Jang MK, Choi YS, et al. The vena contracta in functional tricuspid regurgitation: a real-time three-dimensional color Doppler echocardiography study. J Am Soc Echocardiogr. 2011;24:663–70.CrossRefGoogle Scholar
  62. 62.
    Francis DP, Willson K, Ceri Davies L, Florea VG, Coats AJ, Gibson DG. True shape and area of proximal isovelocity surface area (PISA) when flow convergence is hemispherical in valvular regurgitation. Int J Cardiol. 2000;73:237–42.CrossRefGoogle Scholar
  63. 63.
    Moraldo M, Cecaro F, Shun-Shin M, et al. Evidence-based recommendations for PISA measurements in mitral regurgitation: systematic review, clinical and in-vitro study. Int J Cardiol. 2013;168:1220–8.CrossRefGoogle Scholar
  64. 64.
    de Agustin JA, Viliani D, Vieira C, et al. Proximal isovelocity surface area by single-beat three-dimensional color Doppler echocardiography applied for tricuspid regurgitation quantification. J Am Soc Echocardiogr. 2013;26:1063–72.CrossRefGoogle Scholar
  65. 65.
    Thavendiranathan P, Liu S, Datta S, et al. Quantification of chronic functional mitral regurgitation by automated 3-dimensional peak and integrated proximal isovelocity surface area and stroke volume techniques using real-time 3-dimensional volume color Doppler echocardiography: in vitro and clinical validation. Circ Cardiovasc Imaging. 2013;6:125–33.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Jae-Kwan Song
    • 1
    Email author
  • Denisa Muraru
    • 2
  • Andrada-Camelia Guta
    • 3
  • Luigi P. Badano
    • 2
  1. 1.Department of CardiologyValvular Heart Disease Center, Asan Medical Center Heart Institute, Research Institute for Valvular Heart Disease, University of Ulsan College of MedicineSeoulSouth Korea
  2. 2.University of Milano-Bicocca, and Istituto Auxologico Italiano, IRCCS, San Luca HospitalMilanoItaly
  3. 3.Department of Cardiology“Prof. Dr. C.C. Iliescu” Institute of Cardiovascular DiseasesBucharestRomania

Personalised recommendations