Advertisement

Use of Chlorophyll-a Monitoring to Determine Karst–River Relationships: A Case Study in the Karstic Limestones of Ouche Valley, Burgundy (France)

  • Thierry GaillardEmail author
  • Nevila Jozja
  • James Morris
  • Christophe Brossard
Conference paper
Part of the Advances in Karst Science book series (AKS)

Abstract

The study of groundwater–river relationships is a challenge for water supply management. In order to provide an indicator for Inversac (Estavelle) events in a karstic aquifer, the water and sanitation department of Dijon Metropole tested a chlorophyll-a probe in addition to pressure and temperature probes. The field tests were performed in karstic Bathonian limestones near a canal, where eutrophication occurs in summer. The study site, called Crucifix site, was chosen based on tracer tests showing a probable infiltration of surface water. The Crucifix site gave the opportunity to study simultaneously a karst system in a natural spring alimented by a karstic conduit, and in a nearby well used for drinking water supply. The survey was performed during one week, with a pumping test lasting 24 h at the beginning of the survey. The results indicated that temperature and water level monitoring were not able to detect unambiguously inflow of surface water. In contrast, the chlorophyll-a probe allowed to detect reliably surface water inflow, because chlorophyll-a is naturally absent in groundwater. This form of monitoring is therefore a promising tool for water supply management and its implementation should be generalized for karstic springs influenced by surface water.

Keywords

Karst Estavelle Chlorophyll-a Pumping test 

Notes

Acknowledgements

This study would not have been possible without the support and the interest of Dijon Metropole and Suez Eau France. The authors dedicate this paper to Yves Lemoine, CPGF geophysicist, who first proposed the location of the Crucifix well after geophysical prospecting.

References

  1. Aiken J (1981) A chlorophyll sensor for automatic, remote, operation in the marine environment. Marine Ecology Progress Series, 4(2): 235–239CrossRefGoogle Scholar
  2. Bakalowicz M (2005) Karst groundwater: a challenge for new resources. Hydrogeology Journal, 13 (1): 148–160CrossRefGoogle Scholar
  3. Bonacci O, Fritz F, Denić V (1995) Hydrogeology of Slanac Spring, Croatia. Hydrogeology Journal, 3 (3): 31–40CrossRefGoogle Scholar
  4. Chen Z, Auler AS, Bakalowicz M, Drew D, Griger F, Hartmann J, Jiang G, Moosdorf N, Richts A, Stevanovic Z, Veni G, Goldscheider N (2017) The World Karst Aquifer Mapping project: concept, mapping procedure and map of Europe. Hydrogeology Journal 25: 771–785.  https://doi.org/10.1007/s10040-016-1519-3CrossRefGoogle Scholar
  5. CPGF (1969) Etude géophysique. Faille du Crucifix. AEP de Corcelles-les-Monts. Rapport CPGFGoogle Scholar
  6. Corbier P (2000) Mise en évidence d’une alimentation des aquifères poreux plio-quaternaires par les massifs karstiques de bordure, Etude des relations entre la côte et l’arrière-côte dijonnaises et la plaine de Bresse, Thèse Université de BourgogneGoogle Scholar
  7. Curtel G (1911) Les eaux de Dijon, in Dijon et la Côte d’Or, 40ème cong. Association Française pour l’avancement des Sciences, Dijon, III: 395–421Google Scholar
  8. Dewaide L, Bonniver I, Rochez G, Hallet V (2016) Solute transport in heterogeneous karst systems: dimensioning and estimation of the transport parameters via multi-sampling tracer-tests modelling using the OTIS (One-dimensional Transport with Inflow and Storage) program. J Hydrol 534:567–578.  https://doi.org/10.1016/j.jhydrol.2016.01.049CrossRefGoogle Scholar
  9. Eamus D, Zolfaghar S, Villalobos-Vega R, Cleverly J, Huete A (2015) Groundwater-dependent ecosystems: recent insights from satellite and field-based studies Hydrol. Earth Syst. Sci., 19: 4229–4256,  https://doi.org/10.5194/hess-19-4229-2015CrossRefGoogle Scholar
  10. Falkowski P, Raven J (2007) Aquatic Photosynthesis. 2nd EditionGoogle Scholar
  11. Ford D, William P (2007) Karst hydrogeology and geomorphology, Wiley, Chister, UKCrossRefGoogle Scholar
  12. Gaillard T, Bernard A (2015) Etude des bassins d’alimentation des sources alimentant le Grand Dijon et Messigny-et-Vantoux: Caractérisation de la ressource et délimitation des AAC de Morcueil. SUEZ Consulting report 13DRE045, 342pGoogle Scholar
  13. Geze B (1987) Les mésaventures des sources de l’Estavelle et de l’Inversac en Languedoc Méditerranéen. International Journal of Speleology (16): 101–109CrossRefGoogle Scholar
  14. Goldscheider N, Meiman J, Pronk M, Smart C (2008) Tracer tests in karst hydrogeology and speleology. Journal of Applied Geophysics/International Journal of Speleology, 37 (1): 27–40Google Scholar
  15. Hess JW, White WB (1993) Groundwater geochemistry of the carbonate karst aquifer, southcentral Kentucky, U.S.A. Applied Geochemistry, 8 (2): 189–204,  https://doi.org/10.1016/0883-2927(93)90034-eCrossRefGoogle Scholar
  16. Huang JC (1967) Quality of surface and subsurface water in a Missouri carbonate karst terrain (Dry Fork, Norman, and Benton Creek watersheds). Dissertation, University of MissouriGoogle Scholar
  17. Hunkeler D, Mudry J (2007) Hydrochemical methods in Goldscheider N., Drew D. (2007) Methods in karst hydrogeology. Taylor&Francis, London: 93–122Google Scholar
  18. Kotak BG, Lam AK-Y., Prepas EE, Kenefick SL, Hrudey SE (1995), variability of the hepatotoxin microcystin-lr in hypereutrophic drinking water lakes. Journal of Phycology, 31: 248–263.  https://doi.org/10.1111/j.0022-3646.1995.00248.xCrossRefGoogle Scholar
  19. Loaiciga HA., Maidment DR., Valdes JB (2000) Climate-change impacts in a regional karst aquifer, Texas, USA. Journal of Hydrology, 227 (0): 173–194CrossRefGoogle Scholar
  20. Mangin A (1984) Pour une meilleure connaissance des systèmes hydrologiques à partir des analyses corrélatoire et spectrale. Journal Of hydrology, 67: 25–43CrossRefGoogle Scholar
  21. (de) Montety V, Martin JB, Cohen J, Foster C, Kurz MJ (2011) Influence of Diel Biogeochemical Cycles on Carbonate Equilibrium in a Karst River. Chemical Geology. 283: 31–43,  https://doi.org/10.1016/j.chemgeo.2010.12.025
  22. Mulec J, Kosi G (2009) Lampenflora algae and methods of growth control. Journal of Cave and Karst Studies, 2009, 71 (2): 109–115Google Scholar
  23. OECD (1982) Eutrophication of Waters. Monitoring, Assessment and Control published in French OCDE (1982). L’eutrophisation des eaux. Méthodes de surveillance, d’évaluation et de lutte. OCDE, ParisGoogle Scholar
  24. Padilla A, Pulido-Bosch A (1995) Study of hydrographs of karstic aquifers by means of correlation and cross-spectral analysis, J. of Hydrology, 168: 73–89CrossRefGoogle Scholar
  25. Pellerin BA, Bergamaschi BA, Horsburgh JS (2012). In situ optical waterquality sensor networks – Workshop summary report. USGS Open-File Report 2012–1044, 13 pGoogle Scholar
  26. Smart C, Zabo L, Calvin Alexander E Jr, Worthington SRH (1998) Some advances in fluorometric techniques for water tracing. Environ Monit Assess 53:305–320CrossRefGoogle Scholar
  27. Yuan D. (1997) Sensitivity of karst process to environmental change along the PEP II transect, Quaternary International, 37: 105–113,  https://doi.org/10.1016/1040-6182(96)00012-2CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Thierry Gaillard
    • 1
    Email author
  • Nevila Jozja
    • 2
  • James Morris
    • 3
  • Christophe Brossard
    • 4
  1. 1.CPGF-HORIZONAvonFrance
  2. 2.CetraheUniversity of OrleansOrleansFrance
  3. 3.VALEPORTTotnesUK
  4. 4.HYDREKALyonFrance

Personalised recommendations