Advertisement

Manufacturing Precision of the CNC Milling Machine with Three Controlled Axes

  • Jozef SvetlíkEmail author
  • Juraj Kováč
  • Patrícia Dudová
  • Jozef Dobránsky
  • Michal Považan
Chapter
Part of the EAI/Springer Innovations in Communication and Computing book series (EAISICC)

Abstract

Virtual prototyping of production machines leads not only to lower the development costs but also to lower the overall price for the development of the production machine. Virtual prototyping tools are continually improving and refining. It is often possible to achieve results between the output of the virtual prototyping and the experiment output at a deviation of less than 5%. This deviation value may often be less due to inaccuracies and simplification of the calculation as a variance created by measurement, material inhomogeneity, improper installation, operation, and other factors affecting the overall machine accuracy. The results of combining FEM analysis and virtual prototyping will determine the machine group that has the greatest impact on resulting uncertainty. To eliminate inaccuracy, the largest source of total machine inaccuracy is.

Keywords

Milling machine FEM analysis Virtual prototyping Mathematical modeling Digital model 

Notes

Acknowledgments

The chapter was supported by grant projects: VEGA 1/0437/17 Research and development of rotary module with an unlimited degree rotation, KEGA 039TUKE-4/2016 Creation of virtual laboratories based on WEB technologies to support the educational process in the field of Manufacturing Technology, VEGA 1/124/15 Research and development of advanced methods for virtual prototyping of manufacturing machines and APVV-15-0149 Research of new measuring methods of machine condition.

References

  1. 1.
    Demeč, P., Svetlík, J., Semjon, J.: Virtuálne prototypovnie obrábacích strojov z hľadiska dynamiky procesov obrábania, 1. vyd. Košice, SjF TU, 2011, 182 s. ISBN 978-80-553-0815-9.Google Scholar
  2. 2.
    Marinčin, J. N. Využitie technológií virtuálnej reality pri navrhovaní výrobných systémov. Retrieved from http://fstroj.utc.sk/journal/sk/43/43.htm
  3. 3.
    Piliš, A. (2016). Numerické modelovanie a analýza presnosti trojosého obrábacieho centra. SjF Technická univerzita v Košiciach. Diplomová práca.Google Scholar
  4. 4.
    Keka, B. (2005-2006). Analýza metódou konečných prvkov je integrovaná do CAD systémov. MM Spectrum, 48 s. Retrieved from http://www.mmspektrum.com/clanek/analyza-metodou-konecnych-prvku-je-integrovana-do-cad-systemu.html
  5. 5.
    Demeč, P. (2001). Presnosť obrábacích strojov a jej matematické modelovanie, Vienala Košice, 146 s. ISBN 80-7099-620-X.Google Scholar
  6. 6.
    Demeč, P.: Výrobná technika - základy stavby. 1. vyd. Košice: TU, 2013. 296 s. ISBN 978-80-553-1615-4.Google Scholar
  7. 7.
  8. 8.
    Božek, P., Lozhkin, A., Galajdová, A., Arkhipov, I., & Maiorov, K. (2018). Information technology and pragmatic analysis. Computing and Informatics, 37(4), 1011–1036.  https://doi.org/10.4149/cai.2018-4.1011.MathSciNetCrossRefGoogle Scholar
  9. 9.
    Drabiková, E., Škrabul’áková, E.F.: Reducing costs by graph algorithms. In ICCC 2018, 27 June 2018, Pages 113–117, ISBN: 978-153864762-2, doi: 10.1109/CarpathianCC.2018.8399612.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Jozef Svetlík
    • 1
    Email author
  • Juraj Kováč
    • 1
  • Patrícia Dudová
    • 1
  • Jozef Dobránsky
    • 2
  • Michal Považan
    • 1
  1. 1.Faculty of Mechanical EngineeringTechnical University of KošiceKošiceSlovakia
  2. 2.Faculty of Manufacturing Technologies with a seat in PrešovTechnical University of KošiceKošiceSlovakia

Personalised recommendations