Advertisement

Imposing Boundary Conditions to Match a CAD Virtual Geometry for the Mesh Curving Problem

  • Eloi Ruiz-GironésEmail author
  • Xevi Roca
Chapter
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 127)

Abstract

We present a high-order mesh curving method where the mesh boundary is enforced to match a target virtual geometry. Our method has the unique capability to allow curved elements to span and slide on top of several CAD entities during the mesh curving process. The main advantage is that small angles or small patches of the CAD model do not compromise the topology, quality and size of the boundary elements. We associate each high-order boundary node to a unique group of either curves (virtual wires) or surfaces (virtual shell). Then, we deform the volume elements to accommodate the boundary curvature, while the boundary condition is enforced with a penalty method. At each iteration of the penalty method, the boundary condition is updated by projecting the boundary interpolative nodes of the previous iteration on top of the corresponding virtual entities. The method is suitable to curve meshes featuring non-uniform isotropic and highly stretched elements while matching a given virtual geometry.

Notes

Acknowledgements

This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme under grant agreement No 715546. This work has also received funding from the Generalitat de Catalunya under grant number 2017 SGR 1731. The work of Xevi Roca has been partially supported by the Spanish Ministerio de Economía y Competitividad under the personal grant agreement RYC-2015–01633.

References

  1. 1.
    B. Szabó, I. Babuška, Finite Element Analysis (Wiley, New York, 1991)zbMATHGoogle Scholar
  2. 2.
    C. Schwab, p-and hp-Finite Element Methods: Theory and Applications in Solid and Fluid Mechanics (Clarendon Press, Oxford, 1998)zbMATHGoogle Scholar
  3. 3.
    M.O. Deville, P.F. Fischer, E.H. Mund, High-Order Methods for Incompressible Fluid Flow, vol. 9 (Cambridge University Press, Cambridge, 2002)zbMATHCrossRefGoogle Scholar
  4. 4.
    J.S. Hesthaven, T. Warburton, Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications. Texts in Applied Mathematics (Springer, New York, 2007)Google Scholar
  5. 5.
    G. Karniadakis, S. Sherwin, Spectral/hp Element Methods for Computational Fluid Dynamics (Oxford University Press, Oxford, 2013)zbMATHGoogle Scholar
  6. 6.
    P.E. Vos, S. Sherwin, R. Kirby, From h to p efficiently: implementing finite and spectral/hp element methods to achieve optimal performance for low- and high-order discretisations. J. Comput. Phys. 229(13), 5161–5181 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    C. Cantwell, S. Sherwin, R. Kirby, P. Kelly, From h to p efficiently: strategy selection for operator evaluation on hexahedral and tetrahedral elements. Comput. Fluids 43(1), 23–28 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    C. Cantwell, S. Sherwin, R. Kirby, P. Kelly, From h to p efficiently: selecting the optimal spectral/hp discretisation in three dimensions. Math. Model. Nat. Phenom. 6(3), 84–96 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    R. Löhner, Error and work estimates for high-order elements. Int. J. Numer. Methods Fluids 67(12), 2184–2188 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    M. Yano et al., An optimization framework for adaptive higher-order discretizations of partial differential equations on anisotropic simplex meshes. PhD thesis, Massachusetts Institute of Technology (2012)Google Scholar
  11. 11.
    R. Kirby, S. Sherwin, B. Cockburn, To CG or to HDG: a comparative study. J. Sci. Comput. 51(1), 183–212 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    A. Huerta, X. Roca, A. Angeloski, J. Peraire, Are high-order and hybridizable discontinuous Galerkin methods competitive? Oberwolfach Rep. 9(1), 485–487 (2012)Google Scholar
  13. 13.
    R. Löhner, Improved error and work estimates for high-order elements. Int. J. Numer. Methods Fluids 72, 1207–1218 (2013)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Z.J. Wang, K. Fidkowski, R. Abgrall, F. Bassi, D. Caraeni, A. Cary, H. Deconinck, R. Hartmann, K. Hillewaert, H.T. Huynh et al. High-order CFD methods: current status and perspective. Int. J. Numer. Methods Fluids 72(8), 811–845 (2013)MathSciNetCrossRefGoogle Scholar
  15. 15.
    A. Huerta, A. Angeloski, X. Roca, J. Peraire, Efficiency of high-order elements for continuous and discontinuous Galerkin methods. Int. J. Numer. Methods Eng. 96, 529–560 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    S. Dey, M. Shephard, J.E. Flaherty, Geometry representation issues associated with p-version finite element computations. Comput. Methods Appl. Mech. Eng. 150(1–4), 39–55 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    S. Dey, R. O’Bara, M.S. Shephard, Curvilinear mesh generation in 3D. Comput. Aided Des. 33, 199–209 (2001)CrossRefGoogle Scholar
  18. 18.
    X. Luo, M.S. Shephard, J.-F. Remacle, R. O’Bara, M. Beall, B. Szabó, R. Actis, p-Version mesh generation issues, in Proceedings of the 11th International Meshing Roundtable (Springer, Berlin, 2002), pp. 343–354Google Scholar
  19. 19.
    X. Luo, M.S. Shephard, R. O’Bara, R. Nastasia, M. Beall, Automatic p-version mesh generation for curved domains. Eng. Comput. 20(3), 273–285 (2004)CrossRefGoogle Scholar
  20. 20.
    M.S. Shephard, J.E. Flaherty, K. Jansen, X. Li, X. Luo, N. Chevaugeon, J.-F. Remacle, M. Beall, R. O’Bara, Adaptive mesh generation for curved domains. Appl. Numer. Math. 52(2–3), 251–271 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    P.-O. Persson, J. Peraire, Curved mesh generation and mesh refinement using lagrangian solid mechanics, in Proceedings of the 47th AIAA, 2009Google Scholar
  22. 22.
    D. Moxey, M.D. Green, S.J. Sherwin, J. Peiró, An isoparametric approach to high-order curvilinear boundary-layer meshing. Comput. Methods Appl. Mech. Eng. 283, 636–650 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    A. Gargallo-Peiró, X. Roca, J. Peraire, J. Sarrate, Optimization of a regularized distortion measure to generate curved high-order unstructured tetrahedral meshes. Int. J. Numer. Methods Eng. 103(5), 342–363 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    D. Moxey, D. Ekelschot, Ü. Keskin, S.J. Sherwin, J. Peiró, High-order curvilinear meshing using a thermo-elastic analogy. Comput. Aided Des. 72, 130–139 (2016)CrossRefGoogle Scholar
  25. 25.
    M. Fortunato, P.E. Persson, High-order unstructured curved mesh generation using the winslow equations. J. Comput. Phys. 307, 1–14 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    S. Sherwin, J. Peiró, Mesh generation in curvilinear domains using high-order elements. Int. J. Numer. Methods Eng. 53(1), 207–223 (2002)zbMATHCrossRefGoogle Scholar
  27. 27.
    Z. Xie, R. Sevilla, O. Hassan, K. Morgan, The generation of arbitrary order curved meshes for 3D finite element analysis. Comput. Mech. 51, 361–374 (2012)MathSciNetCrossRefGoogle Scholar
  28. 28.
    R. Poya, R. Sevilla, A.J. Gil, A unified approach for a posteriori high-order curved mesh generation using solid mechanics. Comput. Mech. 58(3), 457–490 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    R. Sevilla, L. Rees, O. Hassan, The generation of triangular meshes for NURBS-enhanced FEM. Int. J. Numer. Methods Eng. 108(8), 941–968 (2016)MathSciNetCrossRefGoogle Scholar
  30. 30.
    T. Toulorge, C. Geuzaine, J.-F. Remacle, J. Lambrechts, Robust untangling of curvilinear meshes. J. Comput. Phys. 254, 8–26 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    S.L. Karman, J.T. Erwin, R.S. Glasby, D. Stefanski, High-order mesh curving using WCN mesh optimization, in 46th AIAA Fluid Dynamics Conference, 2016, p. 3178Google Scholar
  32. 32.
    M. Stees, S.M. Shontz, A high-order log barrier-based mesh generation and warping method. Procedia Eng. 203, 180–192 (2017)CrossRefGoogle Scholar
  33. 33.
    L. Liu, Y. Zhang, T.J.R. Hughes, M.A. Scott, T.W. Sederberg, Volumetric t-spline construction using boolean operations. Eng. Comput. 30(4), 425–439 (2013)CrossRefGoogle Scholar
  34. 34.
    A. Gargallo-Peiró, X. Roca, J. Peraire, J. Sarrate, A distortion measure to validate and generate curved high-order meshes on cad surfaces with independence of parameterization. Int. J. Numer. Methods Eng. (2015)Google Scholar
  35. 35.
    T. Toulorge, J. Lambrechts, J.F. Remacle, Optimizing the geometrical accuracy of curvilinear meshes. J. Comput. Phys. (2016)Google Scholar
  36. 36.
    E. Ruiz-Gironés, X. Roca, J. Sarrate, High-order mesh curving by distortion minimization with boundary nodes free to slide on a 3D CAD representation. Comput. Aided Des. 72, 52–64 (2016)CrossRefGoogle Scholar
  37. 37.
    A. Kelly, L. Kaczmarczyk, C.J. Pearce, Mesh improvement methodology for 3D volumes with non-planar surfaces, in Proceedings of the 21st International Meshing Roundtable, 2011Google Scholar
  38. 38.
    E. Ruiz-Gironés, J. Sarrate, X. Roca, Generation of curved high-order meshes with optimal quality and geometric accuracy. Procedia Eng. 163, 315–327 (2016)CrossRefGoogle Scholar
  39. 39.
    E. Ruiz-Gironés, A. Gargallo-Peiró, J. Sarrate, X. Roca, An augmented lagrangian formulation to impose boundary conditions for distortion based mesh moving and curving. Procedia Eng. 203, 362–374 (2017)CrossRefGoogle Scholar
  40. 40.
    Pointwise Inc., Mesh Generation Software for CFD — Pointwise, Inc. http://www.pointwise.com, 2018
  41. 41.
    T.J. Tautges, CGM: a geometry interface for mesh generation, analysis and other applications. Eng. Comput. 17(3), 299–314 (2001)zbMATHCrossRefGoogle Scholar
  42. 42.
    R. Haimes, M. Drela, On the construction of aircraft conceptual geometry for high-fidelity analysis and design, in 50th AIAA Aerospace sciences meeting including the new horizons forum and aerospace exposition, 2012, p. 683Google Scholar
  43. 43.
    A. Gargallo-Peiró, X. Roca, J. Peraire, J. Sarrate, Distortion and quality measures for validating and generating high-order tetrahedral meshes. Eng. Comput. 31(3), 423–437 (2015)zbMATHCrossRefGoogle Scholar
  44. 44.
    P.M. Knupp, Algebraic mesh quality metrics. SIAM J. Numer. Anal. 23(1), 193–218 (2001)MathSciNetzbMATHGoogle Scholar
  45. 45.
    J. Nocedal, S. Wright, Numerical Optimization (Springer, New York, 1999)zbMATHCrossRefGoogle Scholar
  46. 46.
    Python Software Foundation, Python. http://www.python.org, 2018
  47. 47.
    M.S. Alnæs, J. Blechta, J. Hake, A. Johansson, B. Kehlet, A. Logg, C. Richardson, J. Ring, M.E. Rognes, G.N. Wells, The FEniCS Project Version 1.5. Arch. Numer. Softw. 3(100) (2015)Google Scholar
  48. 48.
    petsc4py, PETSc for Python. https://bitbucket.org/petsc/petsc4py/src/master, 2018
  49. 49.
    Geode, Project Geode: Geometry for Simulation. http://www.pointwise.com/geode/, 2018
  50. 50.
    Open CASCADE, Open CASCADE Technology, 3D modeling and numerical simulation. www.opencascade.org, 2012
  51. 51.
    swig, Simplified Wrapper and Interface Generator. http://www.swig.org/, 2018

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Computer Applications in Science and EngineeringBarcelona Supercomputing CenterBarcelonaSpain

Personalised recommendations