Advertisement

Physiology, Biochemistry and Meiofauna—A Rarely Touched Terrain

  • Olav GiereEmail author
Chapter
Part of the SpringerBriefs in Biology book series (BRIEFSBIOL)

Abstract

Ecophysiological reactions of organisms and the metabolic pathways involved are and will remain a cornerstone in general biological research. In the realm of meiobenthos, however, physiological studies are still scarce, often even absent. At the last International Meiofauna Conference (Crete 2016), just three out of 163 contributions focussed on physiological and ecophysiological topics!

References

  1. Bang C, Dagan T, Deines P et al (2018) Metaorganisms in extreme environments: do microbes play a role in organismal adaptation? Zoology 127:1–19CrossRefGoogle Scholar
  2. Bergin C, Wentrup C, Brewig N et al (2018) Acquisition of a novel sulfur-oxidizing symbiont in the gutless marine worm Inanidrilus exumae. Appl Environ Microbiol 84:e0226717.  https://doi.org/10.1128/AEM.02267-17CrossRefGoogle Scholar
  3. Blazejak A, Erséus C, Amann R, Dubilier N (2005) Coexistence of bacterial sulfide-oxidizers, sulfate-reducers, and spirochetes in a gutless worm (Oligochaeta) from the Peru margin. Appl Environ Microbiol 71:1553–1561CrossRefGoogle Scholar
  4. Braeckman U, Vanaverbeke J, Vincx M et al (2013) Meiofauna metabolism in suboxic sediments: currently overestimated. PLoS ONE 8:e59289CrossRefGoogle Scholar
  5. Cnudde C, Moens T, Werbrouck E et al (2015) Trophodynamics of estuarine intertidal harpacticoid copepods based on stable isotope composition and fatty acid profiles. Mar Ecol Prog Ser 524:225–239CrossRefGoogle Scholar
  6. Dahms H-U, Schizas NV, James RA et al (2018) Marine hydrothermal vents as templates for global change scenarios. Hydrobiologia 818:1–10.  https://doi.org/10.1007/s10750-018-3598-8CrossRefGoogle Scholar
  7. Danovaro R, Dell’Anno A, Pusceddu A et al (2010) The first metazoa living in permanently anoxic conditions. BMC Biol 8:30–40Google Scholar
  8. Dubilier N, Bergin C, Lott C (2008) Symbiotic diversity in marine animals: the art of harnessing chemosynthesis. Nature Rev Microbiol 6:725–740CrossRefGoogle Scholar
  9. Filimonova V, Gonçalves F, Marques JC et al (2016) Fatty acid profiling as bioindicator of chemical stress in marine organisms: a review. Ecol Indicat 67:657–672CrossRefGoogle Scholar
  10. Giere O (2009) Meiobenthology. The microscopic motile fauna of aquatic sediments, 2nd edn. Springer, Berlin, Heidelberg, 527 ppGoogle Scholar
  11. Giere O, Conway NM, Gastrock G, Schmidt C (1991) ’Regulation’ of gutless annelid ecology by endosymbiotic bacteria. Mar Ecol Prog Ser 68:287–299CrossRefGoogle Scholar
  12. Gourtay C, Chabot D, Audet C et al (2018) Will global warming affect the functional need of essential fatty acids in juvenile sea bass (Dicentrarchus labrax)? A first overview of the consequences of lower availability of nutritional fatty acids on growth performance. Mar Biol 165:143.  https://doi.org/10.1007/s00227-018-3402-3CrossRefGoogle Scholar
  13. Jiang H, Kilburn MR, Decelle J, Musat N (2016) NanoSIMS chemical imaging combined with correlative microscopy for biological sample analysis. Curr Opin Biotechnol 41:130–135CrossRefGoogle Scholar
  14. Kiko R (2010) Acquisition of freeze protection in a sea-ice crustacean through horizontal gene transfer? Polar Biol 33:543–556CrossRefGoogle Scholar
  15. Kleiner M, Wentrup C, Holler C et al (2015) Use of carbon monoxide and hydrogen by a bacteria-animal symbiosis from seagrass sediments. Environ Microbiol 17:5023–5035CrossRefGoogle Scholar
  16. Li M, Huang WE, Gibson CM et al (2013) Stable isotope probing and Raman spectroscopy for monitoring carbon flow in a food chain and revealing metabolic pathway. Anal Chem 85:1642–1649CrossRefGoogle Scholar
  17. Mentel M, Martin W (2010) Anaerobic animals from an ancient, anoxic ecological niche. BMC Biol 8:32.  https://doi.org/10.1186/1741-7007-8-32CrossRefPubMedPubMedCentralGoogle Scholar
  18. Møbjerg N, Halberg KA, Jørgensen A et al (2011) Survival in extreme environments—on the current knowledge of adaptations in tardigrades. Acta Physiol 202:404–420CrossRefGoogle Scholar
  19. Müller M, Mentel M, Van Hellemond JJ et al (2012) Biochemistry and evolution of anaerobic energy metabolism in eukaryotes. Microbiol Mol Biol Rev 76:444–495CrossRefGoogle Scholar
  20. Muschiol D, Giere O, Traunspurger W (2015) Population dynamics of a cavernicolous nematode community in a chemoautotrophic groundwater system. Limnol Oceanogr 60:127–135CrossRefGoogle Scholar
  21. Plum C, Pradillon F, Fujiwara Y et al (2017) Copepod colonization of organic and inorganic substrata at a deep-sea hydrothermal vent site on the Mid-Atlantic ridge. Deep-Sea Res Part II Topical Stud 137:335–348.  https://doi.org/10.1016/j.dsr2.2016.06.008CrossRefGoogle Scholar
  22. Pörtner H-O (2008) Ecosystem effects of ocean acidification in times of ocean warming: a physiologist’s view. Mar Ecol Prog Ser 373:203–217CrossRefGoogle Scholar
  23. Sergeeva N, Zaika V (2013) The Black Sea meiobenthos in permanently hypoxic habitat. Acta Zool Bulg 65:139–150Google Scholar
  24. Shchapova EP, Axenov-Gribanov DV, Lubyaga YA et al (2018) Crude oil at concentrations considered safe promotes rapid stress-response in Lake Baikal endemic amphipods. Hydrobiologia 805:189–201.  https://doi.org/10.1007/s10750-017-3303-3CrossRefGoogle Scholar
  25. Steyaert M, Moodley L, Nadong T et al (2007) Responses of intertidal nematodes to short-term anoxic events. J Exp Mar Biol Ecol 345:175–184CrossRefGoogle Scholar
  26. Van Campenhout J, Vanreusel A, Van Belleghem S, Derycke S (2016) Transcription, signaling receptor activity, oxidative phosphorylation, and fatty acid metabolism mediate the presence of closely related species in distinct intertidal and cold-seep habitats. Genom Biol Evol 8:51–69CrossRefGoogle Scholar
  27. Van Gaever S, Moodley L, Pasotti F et al (2009) Trophic specialisation of metazoan meiofauna at the Håkon Mosby mud volcano: fatty acid biomarker isotope evidence. Mar Biol 156:1289–1296CrossRefGoogle Scholar
  28. Veit-Köhler G, Gerdes D, Quiroga E et al (2009) Metazoan meiofauna within the oxygen-minimum zone off Chile: Results of the 2001-PUCK expedition. Deep Sea Res Part II: Topical Stud 56:1105–1111.  https://doi.org/10.1016/j.dsr2.2008.09.013CrossRefGoogle Scholar
  29. Wang Y, Huang WE, Cui L, Wagner M (2016) Single cell stable isotope probing in microbiology using Raman microspectroscopy. Curr Opin Biotechnol 41:34–42CrossRefGoogle Scholar
  30. Werbrouck E, Van Gansbeke D, Vanreusel A et al (2016) Temperature-induced changes in fatty acid dynamics of the intertidal grazer Platychelipus littoralis (Crustacea, Copepoda, Harpacticoida): insights from a short-term feeding experiment. J Therm Biol 57:44–53CrossRefGoogle Scholar
  31. Werbrouck E, Bodé S, Van Gansbeke D et al (2017) Fatty acid recovery after starvation: insights into the fatty acid conversion capabilities of a benthic copepod (Copepoda, Harpacticoida) Mar Biol 164: 151  https://doi.org/10.1007/s00227-017-3181-2
  32. Zeppilli D, Mea M, Corinaldesi C, Danovaro R (2011) Mud volcanoes in the mediterranean Sea are hot spots of exclusive meiobenthic species. Prog Oceanogr 91:260–272CrossRefGoogle Scholar
  33. Zimmermann J, Wentrup C, Sadowski M et al (2016) Closely coupled evolutionary history of ecto- and endosymbionts from two distantly related animal phyla. Mol Ecol 25:3203–3223.  https://doi.org/10.1111/mec.13554

Copyright information

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Universität Hamburg (Emeritus)HamburgGermany

Personalised recommendations