Future Trend Lines in Ecological Meiobenthos Research

  • Olav GiereEmail author
Part of the SpringerBriefs in Biology book series (BRIEFSBIOL)


In a world where human activities increasingly constrict, fragment and destroy natural habitats and threaten its animate nature, the study of ecosystem stability and resilience is becoming a dominant research discipline. Patterns of distribution, species interactions and modes of recolonization are underlying keys for our understanding of the dynamics in most environmental processes. The functioning of ecosystems, the complicated and ever-changing network of mutual organismic relations and the ecological quality status will be in the focus.


  1. Avó AP, Daniell TJ, Neilson R et al (2017) DNA barcoding and morphological identification of benthic nematodes assemblages of estuarine intertidal sediments: advances in molecular tools for biodiversity assessment. Front Mar Sci 4:66. Scholar
  2. Baldrighi E, Manini E (2015) Deep-sea meiofauna and macrofauna diversity and functional diversity: are they related? Mar Biodiv 45(3):469–488.
  3. Bang C, Dagan T, Deines P et al (2018) Metaorganisms in extreme environments: do microbes play a role in organismal adaptation? Zoology 127:1–19Google Scholar
  4. Bellard C, Bertelsmeier C, Leadley P et al (2012) Impacts of climate change on the future of biodiversity. Ecol Lett 15:365–377Google Scholar
  5. Bianchelli S, Pusceddu A, Buschi E, Danovaro R (2016) Trophic status and meiofauna biodiversity in the Northern Adriatic Sea: insights for the assessment of good environmental status. Mar Environ Res 113:18–30Google Scholar
  6. Blazejak A, Erséus C, Amann R, Dubilier N (2005) Coexistence of bacterial sulfide-oxidizers, sulfate-reducers, and spirochetes in a gutless worm (Oligochaeta) from the Peru margin. Appl Environ Microbiol 71:1553–1561Google Scholar
  7. Boeckner MJ, Sharma J, Proctor HC (2009) Revisiting the meiofauna paradox: dispersal and colonization of nematodes and other meiofaunal organisms in lowand high-energy environments. Hydrobiologia 624:91–106.
  8. Boero F, Bonsdorff E (2007) A conceptual framework for marine biodiversity and ecosystem functioning. Mar Ecol 588:231–243Google Scholar
  9. Bonaglia S, Nascimento FJA, Bartoli M et al (2014) Meiofauna increases bacterial denitrification in marine sediments. Nat Commun 5:5133Google Scholar
  10. Bongers T (1990) The maturity index: an ecological measure of environmental disturbance based on nematode species composition. Oecologia 83:14–19Google Scholar
  11. Brannock PM, Learman DR, Mahon AR et al (2018) Meiobenthic community composition and biodiversity along a 5500 km transect of Western Antarctica: a metabarcoding analysis. Mar Ecol Prog Ser 603:47-60.
  12. Cerca J, Purschke G, Struck, TH (2018) Marine connectivity dynamics: clarifying cosmopolitan distributions of marine interstitial invertebrates and the meiofauna paradox. Mar Biol 165:123, pp 21Google Scholar
  13. Costello MJ (2015) Biodiversity: the known, unknown, and rates of extinction. Curr Biol 25:R362–R383Google Scholar
  14. Curini-Galletti M, Artois T, Delogu V et al (2012) Patterns of diversity in soft-bodied meiofauna: dispersal ability and body size matter. PLoS ONE 7(3):e33801.
  15. Danovaro R, Gambi C, Lampadariou N, Tselepides A (2008) Deep-sea nematode biodiversity in the mediterranean basin: testing for longitudinal, bathymetric and energetic gradients. Ecography 31:231–244.
  16. Danovaro R, Carugati L, Corinaldesi C et al (2013) Multiple spatial scale analyses provide new clues on patterns and drivers of deep-sea nematode diversity. Deep-Sea Res Pt. II-Top Stud Oceanogr 92:97–106.
  17. Derycke S, Meester ND, Rigaux A et al (2016) Coexisting cryptic species of the Litoditis marina complex (Nematoda) show differential resource use and have distinct microbiomes with high intraspecific variability. Mol Ecol 25:2093–2110CrossRefGoogle Scholar
  18. Dubilier N, Mülders C, Ferdelmann T et al (2001) Endosymbiotic sulphate-reducing and sulphide-oxidizing bacteria in an oligochaete worm. Nature 411:298–302CrossRefGoogle Scholar
  19. Dubilier N, Bergin C, Lott C (2008) Symbiotic diversity in marine animals: the art of harnessing chemosynthesis. Nat Rev Microbiol 6:725–740CrossRefGoogle Scholar
  20. Dümmer B, Ristau K, Traunspurger W (2016) Varying patterns on varying scales: a metacommunity analysis of nematodes in European lakes. PLoS ONE 11(3):e015 1866.
  21. Fonseca VG, Carvalho GR Sung W et al (2010) Second-generation environmental sequencing unmasks marine metazoan biodiversity. Nat Commun 1:98.
  22. Fonseca VG, Carvalho GR, Nichols B et al (2014) Metagenetic analysis of patterns of distribution and diversity of marine meiobenthic eukaryotes. Global Ecol Biogeogr 23:1293–1302CrossRefGoogle Scholar
  23. Fonseca G, Fontaneto D, Di Domenico M (2018) Addressing biodiversity shortfalls in meiofauna. J Exp Mar Biol Ecol 502:26–38 knowl
  24. Gansfort B, Uthoff J, Traunspurger W (2018) Interactions among competing nematode species affect population growth rates. Oecologia 187:75–84CrossRefGoogle Scholar
  25. Giere O (2009) Meiobenthology. The microscopic motile fauna of aquatic sediments, 2nd edn. Springer, Berlin Heidelberg, pp 527Google Scholar
  26. Hohberg K, Traunspurger W (2009) Foraging theory and partial consumption in a tardigrade-nematode system. Behav Ecol 20:884–890CrossRefGoogle Scholar
  27. Leasi F, Da Silva SC, Norenburg J (2016) At least some meiofaunal species are not everywhere. Indication of geographic, ecological and geological barriers affecting the dispersion of species of Ototyphlonemertes (Nemertea, Hoplonemertea). Mol Ecol 25:1381–1397CrossRefGoogle Scholar
  28. Leasi F, Sevigny JL, Laflamme EM et al (2018) Biodiversity estimates and ecological interpretations of meiofaunal communities are biased by the taxonomic approach. Nat Commun Biol 1:112.
  29. Leduc D, Probert PK, Duncan A (2009) A multi-method approach for identifying meiofaunal trophic connections. Mar Ecol Prog Ser 383:95–111CrossRefGoogle Scholar
  30. Leduc D, Rowden AA, Pilditch CA et al (2013) Is there a link between deep-sea biodiversity and ecosystem function? Mar Ecol 34:334–344.
  31. Lee MR, Riveros M (2012) Latitudinal trends in the species richness of free-living marine nematode assemblages from exposed sandy beaches along the coast of Chile (1842TS). Mar Ecol 33:317–325Google Scholar
  32. Lins L, Leliaert F, Riehl T et al (2017) Evaluating environmental drivers of spatial variability in free-living nematode assemblages along the Portuguese margin. Biogeosciences 14:651–669.
  33. Liu Y, Majdi N, Tackx M et al (2015) Short-term effects of nutrient enrichment on river biofilm: N-NO3- uptake rate and response of meiofauna. Hydrobiologia 744:165–175Google Scholar
  34. Maghsoud H, Weiss A, Smith J III et al (2014) Diagnostic PCR can be used to illuminate meiofauna diets and trophic relationships. Invert Biol 133:121–127CrossRefGoogle Scholar
  35. Maidi N, Traunspurger W (2017) Leaf fall affects the isotopic niches of meiofauna and macrofauna in a stream food web. Food Webs 10:5–14CrossRefGoogle Scholar
  36. Mendes CB, Norenburg JL, Solferini VN, Andrade SC (2018) Hidden diversity: phylogeography of genus Ototyphlonemertes Diesing, 1863 (Ototyphlonemertidae: Hoplonemertea) reveals cryptic species and high diversity in Chilean populations. PLoS ONE 13(4):e0195833CrossRefGoogle Scholar
  37. Mialet B, Majdi N, Tackx M et al (2013) Selective feeding of bdelloid rotifers in river biofilms. PLoS ONE 8(9):e75352.
  38. Moens T, De Meester N, Guilini K et al (2016) Experimental elucidation of meiofauna trophic interactions: from radioactive tracer techniques to next generation sequencing. Isimco 16th Intern Meiofauna Confer, Book of Abstracts: 6–7 ISBN 978-980-9798-29-7Google Scholar
  39. Mordukhovich VV, Kiyashko SI, Kharlamenko VI, Fadeeva NP (2018) Determination of food sources for nematodes in the Kuril Basin and eastern slope of the Kuril Islands by stable isotopes and fatty acid analyses. Deep Sea Res Pt II.
  40. Muschiol D, Giere O, Traunspurger W (2015) Population dynamics of a cavernicolous nematode community in a chemoautotrophic groundwater system. Limnol Oceanogr 60:127–135CrossRefGoogle Scholar
  41. Ott J, Bright M, Bulgheresi S (2004) Marine microbial thiotrophic ectosymbioses. Oceanogr Mar Biol Ann Rev 42:95–118Google Scholar
  42. Packmor J, Riedl T (2016) Records of Normanellidae Lang, 1944 (Copepoda, Harpacticoida) from Madeira Island support the hypothetical role of seamounts and oceanic islands as “stepping stones” in the dispersal of marine meiofauna. Mar Biodivers 46:861–877. Scholar
  43. Patrício J, Adão H, Neto JM et al (2012) Do nematode and macrofauna assemblages provide similar ecological assessment information? Ecol Indicat 14:124–137CrossRefGoogle Scholar
  44. Pusceddu A, Carugati L, Gambi C et al (2016) Organic matter pools, C turnover and meiofauna biodiversity in the sediments of the western Spitsbergen deep continental margin, Svalbard Archipelago. Deep-Sea Res Pt I Oceanogr Res Pap 107:48–58.
  45. Rosli N, Leduc D, Rowden AA, Probert PK (2017) Review of recent trends in ecological studies of deep-sea meiofauna, with focus on patterns and processes at small to regional spatial scale. Mar Biodiv 48:13–34.
  46. Ruehland C, Dubilier N (2010) Gamma- and epsilon proteobacterial ectosymbionts of a shallow-water marine worm are related to deep-sea hydrothermal vent ectosymbionts. Environ Microbiol 12:2312–2326. Scholar
  47. Schmid-Araya JM, Schmid PE, Tod SP, Esteban GF (2016) Trophic positioning of meiofauna revealed by stable isotopes and food web analyses. Ecology 97:3099–3109CrossRefGoogle Scholar
  48. Semprucci F, Colantoni P, Balsamo M (2016) Is maturity index an efficient tool to assess the effects of the physical disturbance on the marine nematode assemblages? A critical interpretation of disturbance-induced maturity successions in some study cases in Maldives. Acta Oceanol Sin 35:89–98CrossRefGoogle Scholar
  49. Senokuchi R, Nomaki H, Watanabe HK (2018) Chemoautotrophic food availability influences copepod assemblage composition at deep hydrothermal vent sites within sea knoll calderas in the northwestern Pacific. Mar Ecol Prog Ser 607:37–51Google Scholar
  50. Stoch F, Artheau M, Brancelj A (2009) Biodiversity indicators in European ground waters: towards a predictive model of stygobiotic species richness. Freshw Biol 54:745–755CrossRefGoogle Scholar
  51. Turner EL, Montagna PA (2016) The max bin regression method to identify maximum bioindicator responses to ecological drivers. Ecol Informat 36:118–125CrossRefGoogle Scholar
  52. Vanaverbeke J, Merckx B, Degraer S, Vincx M (2011) Sediment-related distribution patterns of nematodes and macrofauna: two sides of the benthic coin? Mar Environ Res 71:31–40.
  53. Wieser W (1953) Die Beziehung zwischen Mundhöhlengestalt, Ernährungsweise und Vorkommen bei freilebenden marinen Nematoden. Ark Zool 2:439–484Google Scholar
  54. Zimmermann J, Wentrup C, Sadowski M et al (2016) Closely coupled evolutionary history of ecto- and endosymbionts from two distantly related animal phyla. Mol Ecol 25:3203–3223CrossRefGoogle Scholar

Copyright information

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Universität Hamburg (Emeritus)HamburgGermany

Personalised recommendations