Advertisement

Fields of General Scientific Importance and Public Interest

  • Olav GiereEmail author
Chapter
Part of the SpringerBriefs in Biology book series (BRIEFSBIOL)

Abstract

Each unexplored field, both in a geographical and in a figurative sense, attracts human curiosity and prompts new studies. Even in an electronically interconnected world with news and pictures circulating within seconds, so far unexplored faunas with novel appearances living in unknown, fascinating biotopes excite researchers and the broad public alike. Here, meiofauna seems to be advantaged: often occurring in great numbers, most of the recently discovered animals, even of high taxonomic ranks, have been of meiofaunal size.

References

  1. Baldrighi E, Manini E (2015) Deep-sea meiofauna and macrofauna diversity and functional diversity: are they related? Mar Biodiv 45(3):469–488.  https://doi.org/10.1007/s12526-015-0333-9CrossRefGoogle Scholar
  2. Bluhm BA, Hop H, Vihtakari M et al (2018) Sea ice meiofauna distribution on local to pan-Arctic scales. Ecol Evol 8:2350–2364PubMedPubMedCentralGoogle Scholar
  3. Borgonie G, García-Moyano A, Litthauer D et al (2011) Nematoda from the terrestrial deep subsurface of South Africa. Nature 474(7349):79–82.  https://doi.org/10.1038/nature09974. PMID 21637257
  4. Brannock PM, Learman DR, Mahon AR et al (2018) Meiobenthic community composition and biodiversity along a 5500 km transect of Western Antarctica: a metabarcoding analysis. Mar Ecol Prog Ser 603:47–60.  https://doi.org/10.3354/meps12717CrossRefGoogle Scholar
  5. Danovaro R, Dell’Anno A, Pusceddu A et al (2010a) The first metazoa living in permanently anoxic conditions. BMC Biol 8:30–40Google Scholar
  6. Danovaro R, Company JB, Corinaldesi C et al (2010b) Deep-sea biodiversity in the Mediterranean Sea: the known, the unknown, and the unknowable. PLoS ONE 5(8):e11832, 25 ppGoogle Scholar
  7. Danovaro R, Carugati L, Corinaldesi C et al (2013) Multiple spatial scale analyses provide new clues on patterns and drivers of deep-sea nematode diversity. Deep Sea Res II Topical Stud Oceanogr 92:97–106CrossRefGoogle Scholar
  8. Deharveng L, Stoch F, Gibert J et al (2009) Groundwater biodiversity in Europe. Freshwat Biol 54:709–726CrossRefGoogle Scholar
  9. Flemming H-C, Wingender J (2010) The biofilm matrix. Nat Rev Microbiol 8:623–633CrossRefGoogle Scholar
  10. Flemming H-C, Wingender J, Szewzyk U et al (2016) Biofilms: an emergent form of bacterial life. Nat Rev Microbiol 14:563–575CrossRefGoogle Scholar
  11. Fonseca VG, Sinniger F, Gaspar JM et al (2017) Revealing higher than expected meiofaunal diversity in Antarctic sediments: a metabarcoding approach. Sci Rep 7:6094.  https://doi.org/10.1038/s41598-017-06687-xCrossRefPubMedPubMedCentralGoogle Scholar
  12. Freese D, Schewe I, Kanzog C et al (2012) Recolonisation of new habitats by meiobenthic organisms in the deep Arctic Ocean: an experimental approach. Polar Biol 35:1801–1813CrossRefGoogle Scholar
  13. Galassi DMP, Huys R, Reid JW (2009) Diversity, ecology and evolution of groundwater copepods. Aquat Sci 54:691–708Google Scholar
  14. Galluci F, Moens T, Fonseca G (2009) Small-scale spatial patterns of meiobenthos in the Arctic deep sea. Mar Biodivers 39:9–25CrossRefGoogle Scholar
  15. Gollner S, Ivanenko VN, Arbizu PM, Bright M (2010) Advances in taxonomy, ecology, and biogeography of Dirivultidae (Copepoda) associated with chemosynthetic environments in the Deep Sea. PLoS ONE 5(8):e9801.  https://doi.org/10.1371/journal.pone.0009801
  16. Gollner S, Kaiser S, Menzel L et al (2017) Resilience of benthic deep-sea fauna to mining activities. Mar Environ Res 129:76–101. http://dx.doi.org/10.1016/
  17. Hardy SM, Bik HM, Blanchard AL (2016) Assessing benthic meiofaunal community structure in the Alaskan Arctic: a high-throughput DNA sequencing approach. North Pacific Research Board (NPRB) Project 1303 Final Rep 39 ppGoogle Scholar
  18. Jones DOB, Kaiser S, Sweetman AK et al (2017) Biological responses to disturbance from simulated deep-sea polymetallic nodule mining. PLoS ONE 12(2):e0171750.  https://doi.org/10.1371/journal.pone
  19. Kiko R, Kern S, Kramer M, Mütze H (2017) Colonization of newly forming Arctic sea ice by meiofauna: a case study for the future Arctic? Polar Biol 40:1277–1288Google Scholar
  20. Lins L, Leliaert F, Riehl T et al (2017) Evaluating environmental drivers of spatial variability in free-living nematode assemblages along the Portuguese margin. Biogeosciences 14:651–669Google Scholar
  21. Majdi N, Tackx M, Buffan-Dubau E (2012) Trophic positioning and microphytobenthic carbon uptake of biofilm-dwelling meiofauna in a temperate river. Freshwat Biol 57:1180–1190.  https://doi.org/10.1111/j.1365-2427.2012.02784.x
  22. Mialet B, Majdi N, Tackx M et al (2013) Selective feeding of bdelloid rotifers in river biofilms. PLoS ONE 8(9):e75352.  https://doi.org/10.1371/journal.pone.0075352
  23. Midas’ Summary EC-report Nr 603418 (2018) Seascape Consultants Ltd., UK, 28 ppGoogle Scholar
  24. Muschiol D, Giere O, Traunspurger W (2015) Population dynamics of a cavernicolous nematode community in a chemoautotrophic groundwater system. Limnol Oceanogr 60:127–135CrossRefGoogle Scholar
  25. Pape E, Bezerra TN, Hauquier F et al (2017) Limited spatial and temporal variability in meiofauna and nematode communities at distant but environmentally similar sites in an Area of Interest for deep-sea mining. Front Mar Sci 4:206.  https://doi.org/10.3389/fmars.2017.00205
  26. Pasotti F, Saravia LA, De Troch M et al (2015) Benthic trophic interactions in an Antarctic shallow water ecosystem affected by recent glacier retreat. PLoS ONE 10(11):e0141742.  https://doi.org/10.1371/journal.pone
  27. Plum C, Pradillon F, Fujiwara Y, Sarrazin J (2017) Copepod colonization of organic and inorganic substrata at a deep-sea hydrothermal vent site on the Mid-Atlantic Ridge. Deep Sea Res II 137:335–348CrossRefGoogle Scholar
  28. Rose A, Ingels J, Raes M et al (2015) Long-term iceshelf-covered meiobenthic communities of the Antarctic continental shelf resemble those of the deep sea. Mar Biodivers 45:743–762CrossRefGoogle Scholar
  29. Rosli N, Leduc D, Rowden AA, Probert PK (2018) Review of recent trends in ecological studies of deep-sea meiofauna, with focus on patterns and processes at small to regional spatial scales. Mar Biodivers 48:13–34CrossRefGoogle Scholar
  30. Solwara 1 Project (2008) Main report Vol A and B, environmental impact statement. Nautilus Minerals, NLGoogle Scholar
  31. Stark JS, Mohammad M, McMinn A, Ingels J (2017) The effects of hydrocarbons on meiofauna in marine sediments in Antarctica. J Exp Mar Biol Ecol 496:56–73CrossRefGoogle Scholar
  32. Stoch F, Artheau M, Brancelj A et al (2009) Biodiversity indicators in European ground waters: towards a predictive model of stygobiotic species richness. Freshwat Biol 54:745–755CrossRefGoogle Scholar
  33. Urban-Malinga B, Moens T (2006) Fate of the organic matter in Arctic intertidal sediments: is utilisation by meiofauna important? J Sea Res 56:239–248CrossRefGoogle Scholar
  34. Van Colen C, Underwood GJC, Serôdio J, Paterson DM (2014) Ecology of intertidal microbial biofilms: mechanisms, patterns and future research needs. J Sea Res 92:2–5CrossRefGoogle Scholar
  35. Weitere M, Erken M, Majdi N et al (2018) The food web perspective on aquatic biofilms. Ecol Monogr.  https://doi.org/10.1002/ecm.1315
  36. Zeppilli D, Vanreusel A, Pradillon F et al (2015) Rapid colonisation by nematodes on organic and inorganic substrata deployed at the deep-sea lucky strike hydrothermal vent field (Mid-Atlantic Ridge). Mar Biodivers 45:489–504CrossRefGoogle Scholar
  37. Zeppilli D, Leduc D, Fontanier C et al (2018) Characteristics of meiofauna in extreme marine ecosystems: a review. Mar Biodivers 48:35–71.  https://doi.org/10.1007/s12526-017-0815-z

Copyright information

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Universität Hamburg (Emeritus)HamburgGermany

Personalised recommendations