Advertisement

Assisted Reproductive Technology in Perimenopausal Women

  • Nicolás Mendoza Ladrón de GuevaraEmail author
  • Miguel Angel Motos Guirao
Chapter

Abstract

A decrease in the birth rate and an increase in maternal age have been showed in the last decades. Alternatively, advances in assisted reproductive technology (ART) allows pregnancy at any age, and we face new ethical and health challenges regarding the question of what is the limit for a woman to become pregnant. Now that ARTs are common throughout the world, the medical, legal, moral, and ethical debates unleashed since their inception has been globalized. On the other hand, genetic counseling is a communication process that deals with the human problems associated with the occurrence, or the risk of occurrence, of a genetic disorder in a family. It is based on medical, reproductive, and family history and must always be carried out. In assisted reproduction, risk assessment includes not only the embryo and the fetus but also the parent itself.

Keywords

Infertility Sterility Reproductive health Aging Genetic counseling Genetic therapy In vitro fertilization 

References

  1. 1.
    Liu XJ. Targeting oocyte maturation to improve fertility in older women. Cell Tissue Res. 2016;363(1):57–68.CrossRefGoogle Scholar
  2. 2.
    Wilding M. Potential long-term risks associated with maternal aging (the role of the mitochondria). Fertil Steril. 2015;103(6):1397–401.CrossRefGoogle Scholar
  3. 3.
    Yoldemir T. Fertility in midlife women. Climacteric. 2016;19(3):240–6.CrossRefGoogle Scholar
  4. 4.
    Sauer MV. Reproduction at an advanced maternal age and maternal health. Fertil Steril. 2015;103(5):1136–43.CrossRefGoogle Scholar
  5. 5.
    Practice Committee of American Society for Reproductive Medicine in collaboration with Society for Reproductive Endocrinology and Infertility. Optimizing natural fertility: a committee opinion. Fertil Steril. 2013;100(3):631–7.CrossRefGoogle Scholar
  6. 6.
    Braverman AM. Old, older and too old: age limits for medically assisted fatherhood? Fertil Steril. 2017;107(2):329–33.CrossRefGoogle Scholar
  7. 7.
    MacArthur T, Bachmann G, Ayers C. Menopausal women requesting egg/embryo donation: examining health screening guidelines for assisted reproductive technology. Menopause. 2016;23(7):799–802.CrossRefGoogle Scholar
  8. 8.
    van den Akker O. A review of family donor constructs: current research and future directions. Hum Reprod Update. 2006;12(2):91–101.CrossRefGoogle Scholar
  9. 9.
    American Society of Human Genetics. Genetic counseling. Am J Hum Genet. 1975;27:240–2.Google Scholar
  10. 10.
    Harper JC, Aittomäki K, Borry P, Cornel MC, de Wert G, Dondorp W, Geraedts J, Gianaroli L, Ketterson K, Liebaers I, Lundin K, Mertes H, Morris M, Pennings G, Sermon K, Spits C, Soini S, van Montfoort APA, Veiga A, Vermeesch JR, Viville S, Macek M Jr. Recent developments in genetics and medically assisted reproduction: from research to clinical applications. Eur J Hum Genet. 2018;26:12–33.  https://doi.org/10.1038/s41431-017-0016-z.CrossRefPubMedGoogle Scholar
  11. 11.
    Kuznyetsov V, Madjunkova S, Antes R, Abramov R, Motamedi G, Ibarrientos Z, et al. Evaluation of a novel non-invasive preimplantation genetic screening approach. PLoS One. 2018;13(5):e0197262.CrossRefGoogle Scholar
  12. 12.
    Maxwell SM, Colls P, Hodes-Wertz B, et al. Why do euploid embryos miscarry? A case-control study comparing the rate of aneuploidy within presumed euploid embryos that resulted in miscarriage or live birth using next-generation sequencing. Fertil Steril. 2016;106:1414–19.e5.CrossRefGoogle Scholar
  13. 13.
    Hoeijmakers L, Kempe H, Verschure PJ. Epigenetic imprinting during assisted reproductive technologies: the effect of temporal and cumulative fluctuations in methionine cycling on the DNA methylation state: susceptibility to epigenetic defects in art. Mol Reprod Dev. 2016;83:94–107.CrossRefGoogle Scholar
  14. 14.
    Marshall KL, Rivera RM. The effects of superovulation and reproductive aging on the epigenome of the oocyte and embryo. Mol Reprod Dev. 2018;85:90–105.  https://doi.org/10.1002/mrd.22951 CrossRefGoogle Scholar
  15. 15.
    Koscinski I, Merten M, Kazdar N, Guéant J-L. Culture conditions for gametes and embryos: which culture medium? Which impact on newborn? Gynécol Obstét Fertil Sénol. 2018;46:474–80.CrossRefGoogle Scholar
  16. 16.
    Ventura-Juncá P, Irarrázaval I, Rolle AJ, Gutiérrez JI, Moreno RD, Santos MJ. In vitro fertilization (IVF) in mammals: epigenetic and developmental alterations. Scientific and bioethical implications for IVF in humans. Biol Res. 2015;48:68.  https://doi.org/10.1186/s40659-015-0059-y.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Uk A, Collardeau-Frachon S, Quentin Scanvion LM, Amarf E. Assisted reproductive technologies and imprinting disorders: results of a study from a French congenital malformations registry. Eur J Med Genet. 2018;61(9):518–23.  https://doi.org/10.1016/j.ejmg.2018.05.017.CrossRefPubMedGoogle Scholar
  18. 18.
    Miranda RC, Salem NA, Fincher AS, Mahnke AH, Burrowes SG. Epigenetic mechanisms and inheritance of acquired susceptibility to disease. In: Medical epigenetics; 2016. p. 531–52.  https://doi.org/10.1016/B978-0-12-803239-8.00030-2.CrossRefGoogle Scholar
  19. 19.
    Letao Chen B, Yang T, Zheng Z, Hong Y, Wang H, Qin J. Birth prevalence of congenital malformations in singleton pregnancies resulting from in vitro fertilization/intracytoplasmic sperm injection worldwide: a systematic review and meta-analysis. Arch Gynecol Obstet. 2018;297:1115–30.  https://doi.org/10.1007/s00404-018-4712-x.CrossRefPubMedGoogle Scholar
  20. 20.
    Giorgione V, Parazzini F, Fesslova V, Cipriani S, Candiani M, Inversetti A, Sigismondi C, Tiberio F, Cavoretto P. Congenital heart defects in IVF/ICSI pregnancy: systematic review and meta-analysis. Ultrasound Obstet Gynecol. 2018;51:33–42.  https://doi.org/10.1002/uog.18932.CrossRefPubMedGoogle Scholar
  21. 21.
    Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131(5):861–72.CrossRefGoogle Scholar
  22. 22.
    Pasi CE, Dereli-O A, Negrini S, Friedli M, Fragola G, Lombardo A, Van Houwe G, Naldini L, Casola S, Testa G, Trono D, Pelicci PG, Halazonetis TD. Genomic instability in induced stem cells. Cell Death Differ. 2011;18:745–53.CrossRefGoogle Scholar
  23. 23.
    Spits C, Mateizel I, Geens M, et al. Recurrent chromosomal abnormalities in human embryonic stem cells. Nat Biotechnol. 2008;26:1361–3.CrossRefGoogle Scholar
  24. 24.
    Van Haute L, Spits C, Geens M, Seneca S, Sermon K. Human embryonic stem cells commonly display large mitochondrial DNA deletions. Nat Biotechnol. 2013;31:20–3.CrossRefGoogle Scholar
  25. 25.
    Amps K, Andrews PW, Anyfantis G, et al. Screening ethnically diverse human embryonic stem cells identifies a chromosome 20 minimal amplicon conferring growth advantage. Nat Biotechnol. 2011;29:1132–44.CrossRefGoogle Scholar
  26. 26.
    Greenfield A, Braude P, Flinter F, Lovell-Badge R, Ogilvie C, Perry ACF. Assisted reproductive technologies to prevent human mitochondrial disease transmission. Nat Biotechnol. 2017;35:1059–68.  https://doi.org/10.1038/nbt.3997.CrossRefPubMedGoogle Scholar
  27. 27.
    Mojica FJ, Montoliu L. On the origin of CRISPR-Cas technology: from prokaryotes to mammals. Trends Microbiol. 2016;24(10):811–20.  https://doi.org/10.1016/j.tim.2016.06.005.CrossRefPubMedGoogle Scholar
  28. 28.
    Ma H, et al. Correction of a pathogenic gene mutation in human embryos. Nature. 2017;548:413–9.  https://doi.org/10.1038/nature23305.CrossRefPubMedGoogle Scholar
  29. 29.
    De Wert G, Heindryckx B, Pennings G, Clarke A, Eichenlaub-Ritter U, van El CG FF, Goddijn M, Howard HC, Radojkovic D, Rial-Sebbag E, Dondorp W, Tarlatzis BC, Cornel MC. Responsible innovation in human germline gene editing. Background document to the recommendations of ESHG and ESHRE. Eur J Hum Genet. 2018;26(4):450–70.  https://doi.org/10.1038/s41431-017-0077-z.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Harper JC, Kennett D, Reisel D. The end of donor anonymity: how genetic testing is likely to drive anonymous gamete donation out of business. Hum Reprod. 2016;31:1135–40.CrossRefGoogle Scholar
  31. 31.
    Salama M, Isachenko V, Isachenko E, Rahimi G, Mallmann P, Westphal LM, Inhorn MC, Patrizio P. Cross border reproductive care (CBRC): a growing global phenomenon with multidimensional implications (a systematic and critical review). J Assist Reprod Genet. 2018;35(7):1277–88. [Epub ahead of print].CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Nicolás Mendoza Ladrón de Guevara
    • 1
    Email author
  • Miguel Angel Motos Guirao
    • 1
  1. 1.Department of Obstetrics and GynecologyUniversity of GranadaGranadaSpain

Personalised recommendations