Advertisement

Abstract

Data is growing at an alarming rate. This growth is spurred by varied array of sources, such as embedded sensors, social media sites, video cameras, the quantified-self and the internet-of-things. This is changing our reliance on data for making decisions, or data analytics, from being mostly carried out by an individual and in limited settings to taking place while on-the-move and in the field of action. Unlocking value from data directs that it must be assessed from multiple dimensions. Data’s value can be primarily classified as “information,” “knowledge” or “wisdom”. Data analytics addresses such matters as what and why, as well as what will and what should be done. In recent days, data analytics is moving from being reserved for domain experts to becoming necessary for the end-user. However, data availability is both a pertinent issue and a great opportunity for global businesses. This paper presents recent examples from work in our research team on ubiquitous data analytics and open up to a discussion on key questions relating methodologies, tools and frameworks to improve ubiquitous data team effectiveness as well as the potential goals for a ubiquitous data process methodology. Finally, we give an outlook on the future of data analytics, suggesting a few research topics, applications, opportunities and challenges. This paper is based on a keynote speech to the 14th International Conference on ICT in Education, Research and Industrial Applications. Integration, Harmonization and Knowledge Transfer, Kyiv, Ukraine on 16 May 2018.

Keywords

Ubiquitous data Big data Data analytics Transport sector Smart city Emergency management 

Notes

Acknowledgements

This work is partially supported by the European Union’s Horizon 2020 research and innovation programme under grant agreement No 770038, UBIMOB project (270785) funded by the Norwegian Research Council in 2017 through the IKTPLUSS programme, and BDEM project funded by the Research Council of Norway (RCN) and the Norwegian Centre for International Cooperation in Education (SiU) through the INTPART programme. Authors contributed equally to this work.

References

  1. 1.
    Akerkar, R.: Processing big data for emergency management. In: Emergency and Disaster Management: Concepts, Methodologies, Tools, and Applications, pp. 980–1000. IGI Global (2019).  https://doi.org/10.4018/978-1-5225-2575-2.ch005
  2. 2.
    Akerkar, R., Sajja, P.: Knowledge-Based Systems. Jones & Bartlett Publishers, Burlington (2010)Google Scholar
  3. 3.
    Akerkar, R., Sajja, P.S.: Intelligent Techniques for Data Science. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-29206-9CrossRefzbMATHGoogle Scholar
  4. 4.
    Goes, J.D.: Big data is dead. what’s next. Venturebeatcom guest blog post (2013). https://venturebeat.com/2013/02/22/big-data-is-dead-whats-next/?goback=%2Egde_62438_member_217099766
  5. 5.
  6. 6.
    Barnaghi, P.M., Sheth, A.P., Henson, C.A.: From data to actionable knowledge: big data challenges in the web of things. IEEE Intell. Syst. 28(6), 6–11 (2013).  https://doi.org/10.1109/MIS.2013.142CrossRefGoogle Scholar
  7. 7.
    Carter, K.B.: Actionable Intelligence: A Guide to Delivering Business Results with Big Data Fast!. Wiley, Hoboken (2014)Google Scholar
  8. 8.
    Hotho, A., Pedersen, R.U., Wurst, M.: Ubiquitous data. In: May, M., Saitta, L. (eds.) Ubiquitous Knowledge Discovery. LNCS (LNAI), vol. 6202, pp. 61–74. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-16392-0_4CrossRefGoogle Scholar
  9. 9.
    Insights MTR: The rise of data capital. Oracle (2016). https://www.technologyreview.com/s/601081/the-rise-of-data-capital/
  10. 10.
    Senaratne, H., et al.: Urban mobility analysis with mobile network data: a visual analytics approach. IEEE Trans. Intell. Transp. Syst. 19(5), 1537–1546 (2018).  https://doi.org/10.1109/TITS.2017.2727281CrossRefGoogle Scholar
  11. 11.
    Song, Y., Hu, Z., Leng, X., Tian, H., Yang, K., Ke, X.: Friendship influence on mobile behavior of location based social network users. J. Commun. Netw. 17(2), 126–132 (2015).  https://doi.org/10.1109/JCN.2015.000026CrossRefGoogle Scholar
  12. 12.
    Xia, D., Lu, X., Li, H., Wang, W, Li, Y., Zhang, Z.: A MapReduce-based parallel frequent pattern growth algorithm for spatiotemporal association analysis of mobile trajectory big data. Complexity 2018, 2818,251:1–2818,251:16 (2018).  https://doi.org/10.1155/2018/2818251zbMATHGoogle Scholar
  13. 13.
    Bhattacharya, S., Blunck, H., Kjærgaard, M.B., Nurmi, P.: Robust and energy-efficient trajectory tracking for mobile devices. IEEE Trans. Mob. Comput. 14(2), 430–443 (2015).  https://doi.org/10.1109/TMC.2014.2318712CrossRefGoogle Scholar
  14. 14.
    Menouar, H., Güvenç, I., Akkaya, K., Uluagac, A.S., Kadri, A., Tuncer, A.: UAV-enabled intelligent transportation systems for the smart city: applications and challenges. IEEE Commun. Mag. 55(3), 22–28 (2017).  https://doi.org/10.1109/MCOM.2017.1600238CMCrossRefGoogle Scholar
  15. 15.
    Chen, L., Englund, C.: Every second counts: integrating edge computing and service oriented architecture for automatic emergency management. J. Adv. Transp. 2018, 1–13 (2018).  https://doi.org/10.1155/2018/7592926CrossRefGoogle Scholar
  16. 16.
    Nuaimi, E.A., Neyadi, H.A., Mohamed, N., Al-Jaroodi, J.: Applications of big data to smart cities. J. Internet Serv. Appl. 6(1), 25:1–25:15 (2015).  https://doi.org/10.1186/s13174-015-0041-5CrossRefGoogle Scholar
  17. 17.
    Ma, X., Liu, C., Wen, H., Wang, Y., Wu, Y.J.: Understanding commuting patterns using transit smart card data. J. Transp. Geogr. 58, 135–145 (2017).  https://doi.org/10.1016/j.jtrangeo.2016.12.001CrossRefGoogle Scholar
  18. 18.
    Bagula, A.B., Castelli, L., Zennaro, M.: On the design of smart parking networks in the smart cities: an optimal sensor placement model. Sensors 15(7), 15,443–15,467 (2015).  https://doi.org/10.3390/s150715443CrossRefGoogle Scholar
  19. 19.
    Zhao, Z., Koutsopoulos, H.N., Zhao, J.: Detecting pattern changes in individual travel behavior: a Bayesian approach. Transp. Res. Part B: Methodol. 112, 73–88 (2018).  https://doi.org/10.1016/j.trb.2018.03.017CrossRefGoogle Scholar
  20. 20.
    Alam, F., Mehmood, R., Katib, I., Albogami, N.N., Albeshri, A.: Data fusion and iot for smart ubiquitous environments: a survey. IEEE Access 5, 9533–9554 (2017).  https://doi.org/10.1109/ACCESS.2017.2697839CrossRefGoogle Scholar
  21. 21.
    Nandury, S.V., Begum, B.A.: Smart WSN-based ubiquitous architecture for smart cities. In: Mauri, J.L., et al. (eds.) Proceedings of the International Conference on Advances in Computing, Communications and Informatics, ICACCI 2015, pp. 2366–2373. IEEE, Kochi (2015).  https://doi.org/10.1109/ICACCI.2015.7275972
  22. 22.
    Yi, S., Li, C., Li, Q.: A survey of fog computing: concepts, applications and issues. In: Li, Q., Xuan, D. (eds.) Proceedings of the 2015 Workshop on Mobile Big Data, Mobidata@MobiHoc 2015, pp. 37–42. ACM, Hangzhou (2015).  https://doi.org/10.1145/2757384.2757397
  23. 23.
    Thakuriah, P.V., Geers, D.G.: Data sources and management. In: Thakuriah, P., Geers, D.G. (eds.) Transportation and Information. BRIEFSCOMPUTER, pp. 15–34. Springer, New York (2013).  https://doi.org/10.1007/978-1-4614-7129-5_2CrossRefGoogle Scholar
  24. 24.
    Taylor, N., et al.: The transport data revolution: investigation into the data required to support and drive intelligent mobility (2015). https://ts.catapult.org.uk/wp-content/uploads/2016/04/The-Transport-Data-Revolution.pdf
  25. 25.
    Chen, N., Chen, Y., You, Y., Ling, H., Liang, P., Zimmermann, R.: Dynamic urban surveillance video stream processing using fog computing. In: IEEE Second International Conference on Multimedia Big Data, BigMM 2016, Taipei, Taiwan, 20–22 April 2016, pp. 105–112. IEEE Computer Society (2016).  https://doi.org/10.1109/BigMM.2016.53
  26. 26.
    Anantharam, P., Barnaghi, P.M., Thirunarayan, K., Sheth, A.P.: Extracting city traffic events from social streams. ACM Trans. Intell. Syst. Technol. 6(4), 43:1–43:27 (2015).  https://doi.org/10.1145/2717317CrossRefGoogle Scholar
  27. 27.
    Costa, D.G., Duran-Faundez, C., Andrade, D.C., Rocha-Junior, J.B., Peixoto, J.P.J.: TwitterSensing: an event-based approach for wireless sensor networks optimization exploiting social media in smart city applications. Sensors 18(4), 1080 (2018).  https://doi.org/10.3390/s18041080CrossRefGoogle Scholar
  28. 28.
    Poblet, M., García-Cuesta, E., Casanovas, P.: Crowdsourcing roles, methods and tools for data-intensive disaster management. Inf. Syst. Front. 20, 1–17 (2017).  https://doi.org/10.1007/s10796-017-9734-6CrossRefGoogle Scholar
  29. 29.
    Luna, S., Pennock, M.J.: Social media applications and emergency management: a literature review and research agenda. Int. J. Disaster Risk Reduct. 28, 565–577 (2018).  https://doi.org/10.1016/j.ijdrr.2018.01.006CrossRefGoogle Scholar
  30. 30.
    Burton, S.H., Tanner, K.W., Giraud-Carrier, C.G., West, J.H., Barnes, M.D.: “Right time, right place” health communication on twitter: value and accuracy of location information. J. Med. Internet Res. 14(6), e156:1–e156:11 (2012).  https://doi.org/10.2196/jmir.2121CrossRefGoogle Scholar
  31. 31.
    Kim, J., Hastak, M.: Social network analysis: characteristics of online social networks after a disaster. Int. J. Inf. Manag. 38(1), 86–96 (2018).  https://doi.org/10.1016/j.ijinfomgt.2017.08.003CrossRefGoogle Scholar
  32. 32.
    Imran, M., Castillo, C., Diaz, F., Vieweg, S.: Processing social media messages in mass emergency: a survey. ACM Comput. Surv. (CSUR) 47(4), 67 (2015).  https://doi.org/10.1145/2771588CrossRefGoogle Scholar
  33. 33.
    Yin, C., Xiong, Z., Chen, H., Wang, J., Cooper, D., David, B.: A literature survey on smart cities. Sci. China Inf. Sci. 58(10), 1–18 (2015).  https://doi.org/10.1007/s11432-015-5397-4CrossRefGoogle Scholar
  34. 34.
    Yin, J., Yu, D., Yin, Z., Liu, M., He, Q.: Evaluating the impact and risk of pluvial flash flood on intra-urban road network: a case study in the city center of Shanghai, China. J. Hydrol. 537, 138–145 (2016).  https://doi.org/10.1016/j.jhydrol.2016.03.037CrossRefGoogle Scholar
  35. 35.
    Ko, E.B., Lee, J.W.: Accuracy improvement methods for string similarity measurement in poi (point of interest) data retrieval. KIISE Trans. Comput. Pract. 20(9), 498–506 (2014).  https://doi.org/10.5626/KTCP.2014.20.9.498CrossRefGoogle Scholar
  36. 36.
    Jiang, S., Alves, A.O., Rodrigues, F., Ferreira Jr., J., Pereira, F.C.: Mining point-of-interest data from social networks for urban land use classification and disaggregation. Comput. Environ. Urban Syst. 53, 36–46 (2015).  https://doi.org/10.1016/j.compenvurbsys.2014.12.001CrossRefGoogle Scholar
  37. 37.
    Mosley, M., Brackett, M.H., Earley, S., Henderson, D.: DAMA Guide to the Data Management Body of Knowledge. Technics Publications, Basking Ridge (2010)Google Scholar
  38. 38.
    Lathrop, D., Ruma, L.: Open government: collaboration, transparency, and participation in practice. Govern. Inf. Q. 28(1), 129–130 (2011).  https://doi.org/10.1016/j.giq.2010.08.001CrossRefGoogle Scholar
  39. 39.
    Townsend, A.M.: Smart Cities: Big Data, Civic Hackers, and the Quest for a New Utopia. WW Norton & Company, New York (2013)Google Scholar
  40. 40.
    Barkham, R., Bokhari, S., Saiz, A.: Urban big data: city management and real estate markets. GovLab Digest, New York (2018)Google Scholar
  41. 41.
    Marjani, M., et al.: Big IoT data analytics: architecture, opportunities, and open research challenges. IEEE Access 5, 5247–5261 (2017).  https://doi.org/10.1109/ACCESS.2017.2689040CrossRefGoogle Scholar
  42. 42.
    May, M., Berendt, B., Cornue, A., et al.: Research challenges in ubiquitous knowledge discovery. In: Next Generation of Data Mining, pp. 154–173. Chapman and Hall/CRC (2008).  https://doi.org/10.1201/9781420085877.ch7Google Scholar
  43. 43.
    Ramírez-Gallego, S., Krawczyk, B., García, S., Wozniak, M., Herrera, F.: A survey on data preprocessing for data stream mining: current status and future directions. Neurocomputing 239, 39–57 (2017).  https://doi.org/10.1016/j.neucom.2017.01.078CrossRefGoogle Scholar
  44. 44.
    Satyanarayanan, M., et al.: Edge analytics in the Internet of Things. IEEE Perv. Comput. 14(2), 24–31 (2015).  https://doi.org/10.1109/MPRV.2015.32CrossRefGoogle Scholar
  45. 45.
    Akerkar, R.: Privacy and security in data-driven urban mobility. In: Utilizing Big Data Paradigms for Business Intelligence, pp. 106–128. IGI Global (2019).  https://doi.org/10.4018/978-1-5225-4963-5.ch004Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Western Norway Research InstituteSogndalNorway

Personalised recommendations