Advertisement

Astaxanthin Production by Microalgae Haematococcus pluvialis Through Wastewater Treatment: Waste to Resource

  • Md Mahfuzur Rahman Shah
Chapter

Abstract

Green microalga Haematococcus pluvialis produces a keto-carotenoid astaxanthin with a high antioxidant activity during induction of vegetative cells to cyst cells. Astaxanthin plays an important role in the food, cosmetics, nutraceutical, and aquaculture industries. Wastewater provides water and necessary nutrients for algae cultivation. Microalgae can be used as an economical and feasible way of wastewater treatment coupling with the concurrent creation of high-value products. Microalgae show higher efficiency in nutrient removal than other microorganisms because the nutrients (ammonia, nitrate, phosphate, urea and trace elements) present in various wastewaters are essential for microalgal growth. Although there are a substantial number of researches available on the utilization of various microalgae species for wastewater treatment and nutrient removal, wastewater treatment and astaxanthin production by Haematococcus pluvialis are less investigated. This chapter describes the current knowledge about microalga H. pluvialis-derived astaxanthin, its application and market potential, and culture conditions and nutritional requirements of this microalgal cell growth and astaxanthin formation. The potentiality of microalgae cultivation using various wastewater and integration of H. pluvialis culture in different wastewater streams and nutrient removal and biomass production efficiency are also discussed. Furthermore, the challenges associated with growing H. pluvialis in wastewaters and possible ways to overcome such challenges have been highlighted.

Keywords

Haematococcus pluvialis Microalgae Keto-carotenoid Astaxanthin Nutraceutical 

Notes

Acknowledgments

The author would like to acknowledge overall support provided by his parents and family.

References

  1. Abdel-Raouf N, Al-Homaidan AA, Ibraheem IBM (2012) Microalgae and wastewater treatment. Saudi J Biol Sci 19:257–275Google Scholar
  2. Acien G, Fernández JM, Magán JJ, Molina E (2012) Production cost of a real microalgae production plant and strategies to reduce it. Biotechnol Adv 30:1344–1353CrossRefGoogle Scholar
  3. Aflalo C, Meshulam Y, Zarka A, Boussiba S (2007) On the relative efficiency of two- vs. one-stage production of astaxanthin by the green alga Haematococcus pluvialis. Biotechnol Bioeng 98:300–305CrossRefGoogle Scholar
  4. Ajayan KV, Selvaraju M, Unnikannan P, Sruthi P (2015) Phycoremediation of tannery wastewater using microalgae Scenedesmus species. Int J Phytoremediation 7:907–916CrossRefGoogle Scholar
  5. Ako H, Tamaru CS (1999) Are feeds for food fish practical for aquarium fish? Int Aqua Feeds 2:30–36Google Scholar
  6. An JY, Sim SJ, Lee JS, Kim BW (2003) Hydrocarbon production from secondarily treated piggery wastewater by the green alga Botryococcus braunii. J Appl Phycol 15:185–191CrossRefGoogle Scholar
  7. Andersen LP, Holck S, Kupcinskas L, Kiudelis G, Jonaitis L, Janciauskas D, Permin H, Wadstrom T (2007) Gastric inflammatory markers and interleukins in patients with functional dyspepsia treated with astaxanthin. FEMS Immunol Med Microbiol 50:244–248.  https://doi.org/10.1111/j.1574-695X.2007.00257.xCrossRefGoogle Scholar
  8. Andrisani A, Donà G, Tibaldi E, Brunati AM, Sabbadin C, Armanini D, Alvisi G, Gizzo S, Ambrosini G, Ragazzi E, Bordin L (2015) Astaxanthin improves human sperm capacitation by inducing lyn displacement and activation. Mar Drugs 13:5533–5551.  https://doi.org/10.3390/md13095533CrossRefGoogle Scholar
  9. Arai S, Mori T, Miki W, Yamaguchi K, Konosu S, Satake M, Fujita T (1987) Pigmentation of juvenile coho salmon with carotenoid oil extracted from Antarctic krill. Aquaculture 66:255–264.  https://doi.org/10.1016/0044-8486(87)90111-6CrossRefGoogle Scholar
  10. Arnon D (1961) Cell-free photosynthesis and the energy conversion process. Light Life 1961:489–566Google Scholar
  11. Bischoff HW, Bold HC (1963) Psychological studies IV. In: Some soil algae from enchanted rock and related algal species. University of Texas Publications, Austin, p 95Google Scholar
  12. Borowitzka MA (2013) High-value products from microalgae—their development and commercialisation. J Appl Phycol 25:743–756.  https://doi.org/10.1007/s10811-013-9983-9CrossRefGoogle Scholar
  13. Boussiba S (2000) Carotenogenesis in the green alga Haematococcus pluvialis: cellular physiology and stress response. Physiol Plantarum 108:111–117.  https://doi.org/10.1034/j.1399-3054.2000.108002111.xCrossRefGoogle Scholar
  14. Boussiba S, Bing W, Yuan JP, Zarka A, Chen F (1999) Changes in pigments profile in the green alga Haematococcus pluvialis exposed to environmental stresses. Biotechnol Lett 21:601–604.  https://doi.org/10.1023/A:1005507514694CrossRefGoogle Scholar
  15. Burlew JS (1953) Algal culture: from laboratory to pilot plant. Carnegie Institute, Washington Publication, p 600Google Scholar
  16. Cai T, Park SY, Li Y (2013) Nutrient recovery from wastewater streams by microalgae: status and prospects. Renew Sust Energy Rev 19:360–369CrossRefGoogle Scholar
  17. Capelli GC, Cysewski G (2013) The worlds' best kept health secret natural astaxanthin. Cyanotech Corporation, Kailua-KonaGoogle Scholar
  18. Chekanov K, Lobakova E, Selyakh I, Semenova L, Sidorov R, Solovchenko A (2014) Accumulation of astaxanthin by a new Haematococcus pluvialis strain BM1 from the White Sea coastal rocks (Russia). Mar Drugs 12:4504–4520.  https://doi.org/10.3390/md12084504CrossRefGoogle Scholar
  19. Chen F, Chen H, Gong X (1997) Mixotrophic and heterotrophic growth of Haematococcus lacustris and rheological behaviour of the cell suspensions. Bioresour Technol 62:19–24.  https://doi.org/10.1016/S0960-8524(97)00115-6CrossRefGoogle Scholar
  20. Chew BP, Park JS, Hayek MG, Massimino S, Reinhart GA (2004) Dietary astaxanthin stimulates cell-mediated and humoral immune response in cats. FASEB J 18:533Google Scholar
  21. Chinnasamy S, Bhatnagar A, Hunt RW, Das KC (2010) Microalgae cultivation in a wastewater dominated by carpet mill effluents for biofuel applications. Bioresour Technol 101:3097–3105CrossRefGoogle Scholar
  22. Chinnasamy S, Rao PH, Bhaskar S, Rengasamy R, Singh M (2012) Algae: a novel biomass feedstock for biofuels. In Arora R (Ed.) Microbial Biotechnology: Energy and Environment, pp. 224–239Google Scholar
  23. Chisti Y (2013) Constraints to commercialization of algal fuels. J Biotechnol 167:201–214CrossRefGoogle Scholar
  24. Choi Y, Yun Y, Park JM, Yang J (2011) Determination of the time transferring cells for astaxanthin production considering two-stage process of Haematococcus pluvialis cultivation. Bioresour Technol 102(24):11249–11253CrossRefGoogle Scholar
  25. Choubert G, Heinrich O (1993) Carotenoid pigments of the green alga Haematococcus pluvialis: assay on rainbow trout, Oncorhynchus mykiss, pigmentation in comparison with synthetic astaxanthin and canthaxanthin. Aquaculture 112:217–226.  https://doi.org/10.1016/0044-8486(93)90447-7CrossRefGoogle Scholar
  26. Christenson L, Sims R (2011) Production and harvesting of microalgae for wastewater treatment, biofuels, and bioproducts. Biotechnol Adv 29:686–702CrossRefGoogle Scholar
  27. Comhaire FH, El Garem Y, Mahmoud A, Eertmans F, Schoonjans F (2005) Combined conventional/ antioxidant “Astaxanthin” treatment for male infertility: a double blind randomized trial. Asian J Androl 7:257–262.  https://doi.org/10.1111/j.1745-7262.2005.00047.xCrossRefGoogle Scholar
  28. Craggs RJ, Heubeck SM, Lundquist TJ, Benemann J (2011) Algal biofuels from wastewater treatment high rate algal ponds. Water Sci Technol 63:660–665CrossRefGoogle Scholar
  29. Dela Noue J, Laliberte G, Proulx D (1992) Algae and wastewater. J Appl Phycol 4:247–254CrossRefGoogle Scholar
  30. Del Río E, Acién FG, García-Malea MC, Rivas J, Del Rio E, Acién FG, García-Malea MC, Rivas J, Molina-Grima E, Guerrero MG (2005) Efficient one-step production of astaxanthin by the microalga Haematococcus pluvialis in continuous culture. Biotechnol Bioeng 91:808–815CrossRefGoogle Scholar
  31. Del Rio E, Acien FG, Garcia-Malea MC, Rivas J, Molina-Grima E, Guerrero MG (2007) Efficiency assessment of the one-step production of astaxanthin by the microalga Haematococcus pluvialis. Biotechnol Bioeng 100:397–402.  https://doi.org/10.1002/bit.21770CrossRefGoogle Scholar
  32. Dickinson KE, Whitney CG, McGinn PJ (2013) Nutrient remediation rates in municipal wastewater and their effect on biochemical composition of the microalga Scenedesmus sp AMDD. Algal Res 2:127–134CrossRefGoogle Scholar
  33. Ding J, Zhao F, Cao Y, Xing L, Liu W, Mei S, Li S (2015) Cultivation of microalgae in dairy farm wastewater without sterilization. Int J Phytoremediation 17:222–227CrossRefGoogle Scholar
  34. Domínguez-Bocanegra AR, Guerrero Legarreta I, Martinez Jeronimo F, Tomasini Campocosio A (2004) Influence of environmental and nutritional factors in the production of astaxanthin from Haematococcus pluvialis. Bioresour Technol 92:209–214.  https://doi.org/10.1016/j.biortech.2003.04.001CrossRefGoogle Scholar
  35. Elgarem Y, Lignell A, Comhaire FH (2002) Supplementation with Astaxanthin (Astacarox) improves semen quality in infertile men. In: Proceedings of the 13th international carotenoid symposium, Honolulu, pp 180–197Google Scholar
  36. Elwinger K, Lignell A, Wilhelmson M (1997) Astaxanthin rich algal meal (Haematococcus pluvialis) as carotenoid source in feed for laying hens. In: Proceedings of the VII European symposium on the quality of eggs and egg products, Poznan, pp 52–59Google Scholar
  37. European Commission on Environmnet (2002) Heavy metals in wastes. COWI A/S, CopenhagenGoogle Scholar
  38. Eyster C (1964) Micronutrient requirements for green plants, especially algae. In: Algae and man. Springer, pp 86–119Google Scholar
  39. Fábregas J, Domínguez A, Regueiro M, Maseda A, Otero A (2000) Optimization of culture medium for the continuous cultivation of the microalga Haematococcus pluvialis. Appl Microbiol Biotechnol 53:530–535.  https://doi.org/10.1007/s002530051652CrossRefGoogle Scholar
  40. Fábregas J, Otero A, Maseda A, Domínguez A (2001) Two-stage cultures for the production of astaxanthin from Haematococcus pluvialis. J Biotechnol 89:65–71.  https://doi.org/10.1016/S0168-1656(01)00289-9CrossRefGoogle Scholar
  41. Fan L, Vonshak A, Boussiba S (1994) Effect of temperature and irradiance on growth of Haematococcus pluvialis(Chlorophyceae). J Phycol 30:829–833.  https://doi.org/10.1111/j.0022-3646.1994.00829.xCrossRefGoogle Scholar
  42. Farooq W, Lee Y, Ryu B, Kim B, Kim H, Choi Y, Yang J (2013) Two-stage cultivation of two Chlorella sp. strains by simultaneous treatment of brewery wastewater and maximizing lipid productivity. Bioresour Technol 132:230–238CrossRefGoogle Scholar
  43. Fenton O, hUallachain DO (2012) Agricultural nutrient surpluses as potential input sources to grow third generation biomass (microalgae): a review. Algal Res 1:49–56CrossRefGoogle Scholar
  44. García-Malea MC, Acién FG, Del Río E, Fernández JM, Cerón MC, Guerrero MG (2009) Production of astaxanthin by Haematococcus pluvialis: taking the one-step system outdoors. Biotechnol Bioeng 102:651–657.  https://doi.org/10.1002/bit.22076CrossRefGoogle Scholar
  45. Gong XD, Feng C (1997) Optimization of culture medium for growth of Haematococcus pluvialis. J Appl Phycol 9:437–444CrossRefGoogle Scholar
  46. Gouveia L, Graça S, Sousa C, Ambrosano L, Ribeiro B, Botrel EP, Neto PC, Ferreira AF, Silva CM (2016) Microalgae biomass production using wastewater: treatment and costs: scale-up considerations. Algal Res 16:167–176CrossRefGoogle Scholar
  47. Guerin M, Huntley ME, Olaizola M (2003) Haematococcus astaxanthin: applications for human health and nutrition. Trends Biotechnol 21(5):210–216CrossRefGoogle Scholar
  48. Han D, Li Y, Hu Q (2013) Biology and commercial aspects of Haematococcus pluvialis. In: Richmond A, Hu Q (eds) Handbook of microalgal culture: applied phycology and biotechnology, 2nd edn. Blackwell, Hoboken, pp 388–405CrossRefGoogle Scholar
  49. Haque F, Dutta A, Thimmanagari M, Chiang YW (2016a) Integrated Haematococcus pluvialis biomass production and nutrient removal using bioethanol plant waste effluent. Process Saf Environ Prot 111:128–137CrossRefGoogle Scholar
  50. Haque F, Dutta A, Thimmanagari M, Chiang YW (2016b) Intensified green production of astaxanthin from Haematococcus pluvialis. Food Bioprod Process 99:1–11CrossRefGoogle Scholar
  51. Harker M, Tsavalos AJ, Young AJ (1996) Autotrophic growth and carotenoid production of Haematococcus pluvialis in a 30 liter air-lift photobioreactor. J Ferment Bioeng 82:113–118CrossRefGoogle Scholar
  52. Hata N, Ogbonna JC, Hasegawa Y, Taroda H, Tanaka H (2001) Production of astaxanthin by Haematococcus pluvialis in a sequential heterotrophic-photoautotrophic culture. J Appl Phycol 13:395–402.  https://doi.org/10.1023/A:1011921329568CrossRefGoogle Scholar
  53. He P, Duncan J, Barber J (2007) Astaxanthin accumulation in the green alga Haematococcus pluvialis: effects of cultivation parameters. J Integr Plant Biol 49:447–451.  https://doi.org/10.1111/j.1744-7909.2007.00468.xCrossRefGoogle Scholar
  54. Higuera-Ciapara I, Felix-Valenzuela L, Goycoolea FM (2006) Astaxanthin: a review of its chemistry and applications. Crit Rev Food Sci Nutr 46:185–196.  https://doi.org/10.1080/10408690590957188CrossRefGoogle Scholar
  55. Hu Z, Li Y, Sommerfeld M, Chen F, Hu Q (2008) Enhanced protection against oxidative stress in an astaxanthin-overproduction Haematococcus mutant (Chlorophyceae). Eur J Phycol 43:365–376.  https://doi.org/10.1080/09670260802227736CrossRefGoogle Scholar
  56. Hussein G, Sankawa U, Goto H, Matsumoto K, Watanabe H (2006) Astaxanthin, a carotenoid with potential in human health and nutrition. J Nat Prod 69:443–449.  https://doi.org/10.1021/np050354+CrossRefGoogle Scholar
  57. Inbbor J (1998) Haematococcus, the poultry pigmentor. Feed Mix 6:31–34Google Scholar
  58. Inborr J, Lignell Å (1997) Effect of feeding astaxanthin-rich algae meal (Haematococcus pluvialis) on performance and carotenoid concentration of different tissues of broiler chickens. In: Proceedings of the XIII WPSA conference on Poultry meat quality in Poznan, Poland, pp 39–43Google Scholar
  59. Industry Experts (2015) Global Astaxanthin market – sources, Technologies and Applications. Available online at: http://industry-experts.com/verticals/healthcare-and-pharma/global-astaxanthin-market-sources-technologies-and-applications
  60. Issarapayup K, Powtongsook S, Pavasant P (2009) Flat panel airlift photobioreactors for cultivation of vegetative cells of microalga Haematococcus pluvialis. J Biotechnol 142:227–232.  https://doi.org/10.1016/j.jbiotec.2009.04.014CrossRefGoogle Scholar
  61. Iwamoto T, Hosoda K, Hirano R, Kurata H, Matsumoto A, Miki W (2000) Inhibition of low-density lipoprotein oxidation by astaxanthin. J Atheroscler Thromb 7:216–222.  https://doi.org/10.5551/jat1994.7.216CrossRefGoogle Scholar
  62. Ji MK, Abou-Shanab RAI, Kim SH, Salama ES, Lee SH, Kabra AN, Lee YS, Hong S, Jeon BH (2013) Cultivation of microalgae species in tertiary municipal wastewater supplemented with CO2 for nutrient removal and biomass production. Ecol Eng 58:142–148CrossRefGoogle Scholar
  63. Kabra AN, Salama el S, Roh HS, Kim JR, Lee DS, Jeon BH (2014) Effect of mine wastewater on nutrient removal and lipid production by a green microalga Micractinium reisseri from concentrated municipal wastewater. Bioresour Technol 157:84–90CrossRefGoogle Scholar
  64. Kaewpintong K, Shotipruk A, Powtongsook S, Pavasant P (2007) Photoautotrophic high-density cultivation of vegetative cells of Haematococcus pluvialis in airlift bioreactor. Bioresour Technol 98:288–295.  https://doi.org/10.1016/j.biortech.2006.01.011CrossRefGoogle Scholar
  65. Kakizono T, Kobayashi M, Nagai S (1992) Effect of carbon/nitrogen ratio on encystment accompanied with astaxanthin formation in a green alga Haematococcus pluvialis. J Ferment Bioeng 74:403–405CrossRefGoogle Scholar
  66. Kamath BS, Srikanta BM, Dharmesh SM, Sarada R, Ravishankar GA (2008) Ulcer preventive and antioxidative properties of astaxanthin from Haematococcus pluvialis. Eur J Pharmacol 590:387–395.  https://doi.org/10.1016/j.ejphar.2008.06.042CrossRefGoogle Scholar
  67. Kang CD, Lee JS, Park TH, Sim SJ (2005) Comparison of heterotrophic and photoautotrophic induction on astaxanthin production by Haematococcus pluvialis. Appl Microbiol Biotechnol 68:237–241.  https://doi.org/10.1007/s00253-005-1889-2CrossRefGoogle Scholar
  68. Kang CD, An JM, Park TH, Sim SJ (2006) Astaxanthin biosynthesis from simultaneous N and P uptake by the green alga Haematococcus pluvialis in primary-treated wastewater. Biochem Eng J 31:234–238CrossRefGoogle Scholar
  69. Kang CD, Lee D, Park J, Sim S (2007) Complementary limiting factors of astaxanthin synthesis during photoautotrophic induction of Haematococcus pluvialis: C/N ratio and light intensity. Appl Microbiol Biotechnol 74:987–994CrossRefGoogle Scholar
  70. Kang CD, Han SJ, Choi SP, Sim SJ (2010) Fed-batch culture of astaxanthin-rich Haematococcus pluvialis by exponential nutrient feeding and stepwise light supplementation. Bioprocess Biosyst Eng 33:133–139.  https://doi.org/10.1007/s00449-009-0362-5CrossRefGoogle Scholar
  71. Karppi J, Rissanen TH, Nyyssönen K, Kaikkonen J, Olsson AG, Voutilainen S (2007) Effects of astaxanthin supplementation on lipid peroxidation. Int J Vitam Nutr Res 77:3–11.  https://doi.org/10.1024/0300-9831.77.1.3CrossRefGoogle Scholar
  72. Kobayashi M, Kakizono T, Nagai S (1991) Astaxanthin production by a green alga, Haematococcus pluvialis accompanied with morphological changes in acetate media. J Ferment Bioeng 71:335–339.  https://doi.org/10.1016/0922-338X(91)90346-ICrossRefGoogle Scholar
  73. Kobayashi M, Kakizono T, Nagai S (1993) Enhanced carotenoid biosynthesis by oxidative stress in acetateinduced cyst cells of a green unicellular alga, Haematococcus pluvialis. Appl Environ Microbiol 59:867–873Google Scholar
  74. Kobayashi M, Kurimura Y, Tsuji Y (1997) Light-independent, astaxanthin production by the green microalga Haematococcus pluvialis under salt stress. Biotechnol Lett 19:507–509CrossRefGoogle Scholar
  75. Koller M, Muhr A, Braunegg G (2014) Microalgae as versatile cellular factories for valued products. Algal Res 6:52–63.  https://doi.org/10.1016/j.algal.2014.09.002CrossRefGoogle Scholar
  76. Kumar A, Ergas S, Yuan X, Sahu A, Zhang Q, Dewulf J, Xavier F, Langenhove MHV (2010) Enhanced CO2 fixation and biofuel production via microalgae: recent developments and future directions. Trends Biotechnol 28:371–380CrossRefGoogle Scholar
  77. Kupcinskas L, Lafolie P, Lignell A, Kiudelis G, Jonaitis L, Adamonis K (2008) Efficacy of the natural antioxidant astaxanthin in the treatment of functional dyspepsia in patients with or without Helicobacter pylori infection: a prospective, randomized, double blind, and placebo-controlled study. Phytomedicine 15:391–399.  https://doi.org/10.1016/j.phymed.2008.04.004CrossRefGoogle Scholar
  78. Lababpour A, Shimahara K, Hada K, Kyoui Y, Katsuda T, Katoh S (2005) Fedbatch culture under illumination with blue light emitting diodes (LEDs) for astaxanthin production by Haematococcus pluvialis. J Biosci Bioeng 100:339–342.  https://doi.org/10.1263/jbb.100.339CrossRefGoogle Scholar
  79. Larsdotter K (2006) Wastewater treatment with microalgae-a literature review. Vatten 62:31Google Scholar
  80. Lau PS, Tam NFY, Wong YS (1995) Effect of algal density on nutrient removal from primary settled wastewater. Environ Pollut 89:59–66CrossRefGoogle Scholar
  81. Ledda C, Villegas GR, Adani F, Fernández FA, Grima EM (2015) Utilization of centrate from wastewater treatment for the outdoor production of Nannochloropsis gaditana biomass at pilot-scale. Algal Res 12:17–25CrossRefGoogle Scholar
  82. Li Y, Sommerfeld M, Chen F, Hu Q (2010) Effect of photon flux densities on regulation of carotenogenesis and cell viability of Haematococcus pluvialis (Chlorophyceae). J Appl Phycol 22:253–263.  https://doi.org/10.1007/s10811-009-9453-6CrossRefGoogle Scholar
  83. Li J, Zhu DL, Niu J, Shen SD, Wang G (2011) An economic assessment of astaxanthin production by large scale cultivation of Haematococcus pluvialis. Biotechnol Adv 29:568–574.  https://doi.org/10.1016/j.biotechadv.2011.04.001CrossRefGoogle Scholar
  84. Li M, Wu W, Zhou P, Xie F, Zhou Q, Kangsen Mai K (2014) Comparison effect of dietary astaxanthin and Haematococcus pluvialis on growth performance, antioxidant status and immune response of large yellow croaker Pseudosciaena crocea. Aquaculture 434:227–232.  https://doi.org/10.1016/j.aquaculture.2014.08.022CrossRefGoogle Scholar
  85. Lignell A, Inborr J (1999) Agent for increasing the production of/in breeding and production mammals. Varmdo: European patent. EP0912106Google Scholar
  86. Lignell ANGK, Inborr J (2000) Agent for increasing the production of/in breeding and production mammals. Varmdo: United States patent and trademark office granted patent. WO97/35491Google Scholar
  87. Lim S, Chu W, Phang S (2010) Use of Chlorella vulgaris for bioremediation of textile wastewater. J Bioresour Technol 101:7314–7322CrossRefGoogle Scholar
  88. Liu Y (2018) Optimization study of biomass and astaxanthin production by Haematococcus pluvialis under minkery wastewater cultures. Masters Thesis, Dalhousie University, Halifax, Nova Scotia, p 139Google Scholar
  89. Liu BH, Lee YK (2003) Effect of total secondary carotenoids extracts from Chlorococcum sp. on Helicobacter pylori-infected BALB/c mice. Int Immunopharmacol 3:979–986.  https://doi.org/10.1016/S1567-5769(03)00096-1CrossRefGoogle Scholar
  90. Liu X, Osawa T (2007) Cis astaxanthin and especially 9-cis astaxanthin exhibits a higher antioxidant activity in vitro compared to the all-trans isomer. Biochem Biophys Res Commun 357:187–193.  https://doi.org/10.1016/j.bbrc.2007.03.120CrossRefGoogle Scholar
  91. Liu Y, Yildiz I (2018) The effect of salinity concentration on algal biomass production and nutrient removal from municipal wastewater by Dunaliella salina. Int J Energy Res 42:2997CrossRefGoogle Scholar
  92. Lopez MCGM, Sanchez ED, Lopez JLC, Fernandez FGA, Sevilla JMF, Rivas J, Guerrero MG, Grima EM (2006) Comparative analysis of the outdoor culture of Haematococcus pluvialis in tubular and bubble column photobioreactors. J Biotechnol 123:329–342CrossRefGoogle Scholar
  93. Lorenz RT (1999) A technical review of Haematococcus algae. NatuRose™ Technical Bulletin #060. Cyanotech Corporation, Kailua-KonaGoogle Scholar
  94. Markou G, Georgakakis D (2011) Cultivation of filamentous cyanobacteria (blue-green algae) in agro-industrial wastes and wastewaters: a review. Appl Energy 88:3389–3401CrossRefGoogle Scholar
  95. Matamoros V, Rodriguez Y, Albaiges J (2016a) A comparative assessment of intensive and extensive wastewater treatment technologies for removing emerging contaminants in small communities. Water Res 88:777–785CrossRefGoogle Scholar
  96. Matamoros V, Uggetti E, García J, Bayona JM (2016b) Assessment of the mechanisms involved in the removal of emerging contaminants by microalgae from wastewater: a laboratory scale study. J Hazard Mater 301:197–205CrossRefGoogle Scholar
  97. McGinn PJ, Dickinson KE, Bhatti S, Frigon JC, Guiot SR, O’Leary SJ (2011) Integration of microalgae cultivation with industrial waste remediation for biofuel and bioenergy production: opportunities and limitations. Photosynth Res 109:231–247CrossRefGoogle Scholar
  98. Mehta CM, Khunjar WO, Nguyen V, Tait S, Batstone DJ (2015) Technologies to recover nutrients from waste streams: a critical review. Crit Rev Environ Sci Technol 45:385–427CrossRefGoogle Scholar
  99. Miyawaki H, Takahashi J, Tsukahara H, Takehara I (2008) Effects of astaxanthin on human blood rheology. J Clin Biochem Nutr 43:69–74.  https://doi.org/10.3164/jcbn.2008048CrossRefGoogle Scholar
  100. Nagata A, Tajima T, Takahashi J (2006) Effect of astaxanthin 5 mg on anti fatigue and task performance of human. Carotenoid Sci 10:102–106Google Scholar
  101. Naguib YMA (2000) Antioxidant activities of astaxanthin and related carotenoids. J Agric Food Chem 48:1150–1154.  https://doi.org/10.1021/jf991106kCrossRefGoogle Scholar
  102. Nakao R, Nelson OL, Park JS, Mathison BD, Thompson PA, Chew BP (2010) Effect of astaxanthin supplementation on inflammation and cardiac function in BALB/c mice. Anticancer Res 30:2721–2725Google Scholar
  103. Neveux N, Magnusson M, Mata L, Whelan A, de Nys R, Paul NA (2016) The treatment of municipal wastewater by the macroalga Oedogonium sp and its potential for the production of biocrude. Algal Res 13:284–292CrossRefGoogle Scholar
  104. Nishikawa Y, Minenaka Y, Ichimura M, Tatsumi K, Nadamoto T, Urabe K (2005) Effects of astaxanthin and vitamin C on the prevention of gastric ulcerations in stressed rats. J Nutr Sci Vitaminol (Tokyo) 51:135–141.  https://doi.org/10.3177/jnsv.51.135CrossRefGoogle Scholar
  105. Olaizola M (2000) Commercial production of astaxanthin from Haematococcus pluvialis using 25,000-liter outdoor photobioreactors. J Appl Phycol 12:499–506CrossRefGoogle Scholar
  106. Orosa M, Torres E, Fidalgo P, Abalde J (2000) Production and analysis of secondary carotenoids in green algae. J Appl Phycol 12:553–556.  https://doi.org/10.1023/A:1008173807143CrossRefGoogle Scholar
  107. Orosa M, Franqueira D, Cid A, Abalde J (2005) Analysis and enhancement of astaxanthin accumulation in Haematococcus pluvialis. Bioresour Technol 96:373–378CrossRefGoogle Scholar
  108. Palozza P, Torelli C, Boninsegna A, Simone R, Catalano A, Mele MC (2009) Growth-inhibitory effects of the astaxanthin-rich alga Haematococcus pluvialis in human colon cancer cells. Cancer Lett 283:108–117.  https://doi.org/10.1016/j.canlet.2009.03.031CrossRefGoogle Scholar
  109. Panis G (2015) Commercial Astaxanthin production derived by green alga Haematococcus pluvialis: a microalgae process model and a techno-economic assessment all through production line. Master Thesis, Utrecht University, NetherlandsGoogle Scholar
  110. Parisenti J, Beirao LH, Maraschin M, Mourino JL, Nascimento Viera F, Do Nascimento Vieira F, Bedin LH (2011) Pigmentation and carotenoid content of shrimp fed with Haematococcus pluvialis and soy lecithin. Aquac Nutr 17:530–535.  https://doi.org/10.1111/j.1365-2095.2010.00794.xCrossRefGoogle Scholar
  111. Park J, Craggs R, Shilton A (2011) Wastewater treatment high rate algal ponds for biofuel production. Bioresour Technol 102:35–42CrossRefGoogle Scholar
  112. Park JC, Choi SP, Hong ME, Sim SJ (2014) Enhanced astaxanthin production from microalga, Haematococcus pluvialis by two-stage perfusion culture with stepwise light irradiation. Bioprocess Biosyst Eng 37:2039–2047.  https://doi.org/10.1007/s00449-014-1180-yCrossRefGoogle Scholar
  113. Pérez-López P, González-García S, Jeffryes C, Agathos SN, McHugh E, Walsh D (2014) Life-cycle assessment of the production of the red antioxidant carotenoid astaxanthin by microalgae: from lab to pilot scale. J Clean Prod 64:332–344CrossRefGoogle Scholar
  114. Pittman JK, Dean AP, Osundeko O (2011) The potential of sustainable algal biofuel production using wastewater resources. Bioresour Technol 102:17–25CrossRefGoogle Scholar
  115. Querques N, Cesta M, Santos RM, Chiang YW (2015) Microalgal phycocyanin productivity: strategies for phyco-valorization. J Chem Technol Biotechnol 90:1968–1982.  https://doi.org/10.1002/jctb.4796CrossRefGoogle Scholar
  116. Ranga Rao A, Harshvardhan Reddy A, Aradhya SM (2010) Antibacterial properties of Spirulina platensis, Haematococcus pluvialis, Botryococcus braunii micro algal extracts. Curr Trends Biotechnol Pharm 4:809–819Google Scholar
  117. Ranga Rao A, Sindhuja HN, Dharmesh SM, Sankar KU, Sarada R, Ravishankar GA (2013) Effective inhibition of skin cancer, tyrosinase, and antioxidative properties by astaxanthin and astaxanthin esters from the green alga Haematococcus pluvialis. J Agric Food Chem 61:3842–3851.  https://doi.org/10.1021/jf304609jCrossRefGoogle Scholar
  118. Ranga Rao A, Siew Moi P, Ravi S, Aswathanarayana RG (2014) Astaxanthin: sources, extraction, stability, biological activities and its commercial applications—a review. Mar Drugs 12:128–152CrossRefGoogle Scholar
  119. Ranjbar R, Inoue R, Shiraishi H, Katsuda T, Katoh S (2008) High efficiency production of astaxanthin by autotrophic cultivation of Haematococcus pluvialis in a bubble column photobioreactor. Biochem Eng J 39:575–580.  https://doi.org/10.1016/j.bej.2007.11.010CrossRefGoogle Scholar
  120. Razon LF, Tan RR (2011) Net energy analysis of the production of biodiesel and biogas from the microalgae: Haematococcus pluvialis and Nannochloropsis. Appl Energy 88:3507–3514CrossRefGoogle Scholar
  121. Rippka R, Deruelles J, Waterbury M, Herdman M, Stanier R (1979) Generic assignments, strain histories and properties of pure culture of cyanobacteria. J Gen Microbiol 111:1–61.  https://doi.org/10.1099/00221287-111-1-1CrossRefGoogle Scholar
  122. Rogers JN, Rosenberg JN, Guzman BJ, Oh VH, Mimbela LE, Ghassemi A, Betenbaugh MJ, Oyler GA, Donohue MD (2014) A critical analysis of paddlewheel-driven raceway ponds for algal biofuel production at commercial scales. Algal Res 4:76–88CrossRefGoogle Scholar
  123. Ruen-ngam D, Shotipruk A, Pavasant P (2010) Comparison of extraction methods for recovery of Astaxanthin from Haematococcus pluvialis. Sep Sci Technol 46:64–70CrossRefGoogle Scholar
  124. Ruiz-Marin A, Mendoza-Espinosa LG, Stephenson T (2010) Growth and nutrient removal in free and immobilized green algae in batch and semi-continuous cultures treating real wastewater. Bioresour Technol 101:58–64CrossRefGoogle Scholar
  125. Saha SK, McHugh E, Hayes J, Moane S, Walsh D, Murray P (2013) Effect of various stressregulatory factors on biomass and lipid production in microalga Haematococcus pluvialis. Bioresour Technol 128:118–124.  https://doi.org/10.1016/j.biortech.2012.10.049CrossRefGoogle Scholar
  126. Salama ES, Kurade MB, Abou-Shanab RAI, El-Dalatony MM, Yang IS, Min B, Jeon BH (2017) Recent progress in microalgal biomass production coupled with wastewater treatment for biofuel generation. Renew Sust Energ Rev 79:1189–1211CrossRefGoogle Scholar
  127. Sarada R, Bhattacharya S, Ravishankar GA (2002a) Optimization of culture conditions for growth of the green alga Haematococcus pluvialis. World J Microbiol Biotechnol 18:517–521.  https://doi.org/10.1023/A:1016349828310CrossRefGoogle Scholar
  128. Sarada R, Tripathi U, Ravishankar GA (2002b) Influence of stress on astaxanthin production in Haematococcus pluvialis grown under different culture conditions. Process Biochem 37:623–627.  https://doi.org/10.1016/S0032-9592(01)00246-1CrossRefGoogle Scholar
  129. Sato H, Nagare H, Huynh TNC, Komatsu H (2015) Development of a new wastewater treatment process for resource recovery of carotenoids. Water Sci Technol 72:1191–1197CrossRefGoogle Scholar
  130. Seki T, Sueki H, Kono H, Suganuma K, Yamashita E (2001) Effects of astaxanthin from Haematococcus pluvialis on human skin-patch test; skin repeated application test; effect on wrinkle reduction. Fragrance J 12:98–103Google Scholar
  131. Shah MMR, Liang Y, Cheng JJ, Daroch M (2016) Astaxanthin-producing green microalga Haematococcus pluvialis: from single cell to high value commercial products. Front Plant Sci 7:531Google Scholar
  132. Sheikhzadeh N, Panchah IK, Asadpour R, Tayefi-Nasrabadi H, Mahmoudi H (2012a) Effects of Haematococcus pluvialis in maternal diet on reproductive performance and egg quality in rainbow trout (Oncorhynchus mykiss). Anim Reprod Sci 130:119–123CrossRefGoogle Scholar
  133. Sheikhzadeh N, Tayefi-Nasrabadi H, Oushani AK, Najafi Enferadi MH (2012b) Effects of Haematococcus pluvialis supplementation on antioxidant system and metabolism in rain- bow trout (Oncorhynchus mykiss). Fish Physiol Biochem 38:413–419CrossRefGoogle Scholar
  134. Shen Y (2014) Carbon dioxide bio-fixation and wastewater treatment via algae photochemical synthesis for biofuels production. RSC Adv 4:49672–49722CrossRefGoogle Scholar
  135. Solovchenko A (2013) Physiology and adaptive significance of secondary carotenogenesis in green microalgae. Russ J Plant Physiol 60:1–13CrossRefGoogle Scholar
  136. Sommer TR, Potts WT, Morrissy NM (1991) Utilization of microalgal astaxanthin by rainbow trout (Oncorhynchus mykiss). Aquaculture 94:79–88CrossRefGoogle Scholar
  137. Stumm W, Morgan JJ (1970) Aquatic chemistry; an introduction emphasizing chemical equilibria in natural waters. Willey-VCH Verlag GmbH & Co. KGaA, WeinheimGoogle Scholar
  138. Tjahjono AE, Hayama Y, Kakizono T, Terada Y, Nishio N, Nagai S (1994) Hyper accumulation of astaxanthin in a green alga Haematococcus pluvialis at elevated temperatures. Biotechnol Lett 16:133–138.  https://doi.org/10.1007/BF01021659CrossRefGoogle Scholar
  139. Tolasa S, Cakli S, Ostermeyer U (2005) Determination of astaxanthin and canthaxanthin in salmonid. Eur Food Res Technol 221:787–791.  https://doi.org/10.1007/s00217-005-0071-5CrossRefGoogle Scholar
  140. Tominaga K, Hongo N, Karato M, Yamashita E (2012) Cosmetic benefits of astaxanthin on humans subjects. Acta Biochim Pol 59:43–47CrossRefGoogle Scholar
  141. Torrissen OJ, Naevdal G (1984) Pigmentation of salmonids — genetical variation in carotenoid deposition in rainbow trout. Aquaculture 38:59–66CrossRefGoogle Scholar
  142. Torzillo G, Goksan T, Faraloni C, Kopecky J, Masojidek J (2003) Interplay between photochemical activities and pigment composition in an outdoor culture of Haematococcus pluvialis during the shift from the green to red stage. J Appl Phycol 15:127–136CrossRefGoogle Scholar
  143. Tripathi U, Sarada R, Ramachandra Rao S, Ravishankar GA (1999) Production of astaxanthin in Haematococcus pluvialis cultured in various media. Bioresour Technol 68:197–199.  https://doi.org/10.1016/S0960-8524(98)00143-6CrossRefGoogle Scholar
  144. Wan M, Zhang J, Hou D, Fan J, Li Y, Huang J (2014a) The effect of temperature on cell growth and astaxanthin accumulation of Haematococcus pluvialis during a light–dark cyclic cultivation. Bioresour Technol 167:276–283.  https://doi.org/10.1016/j.biortech.2014.06.030CrossRefGoogle Scholar
  145. Wan M, Hou D, Li Y, Fan J, Huang J, Liang S (2014b) The effective photoinduction of Haematococcus pluvialis for accumulating astaxanthin with attached cultivation. Bioresour Technol 163:26–32.  https://doi.org/10.1016/j.biortech.2014.04.017CrossRefGoogle Scholar
  146. Wang P (2014) Culture medium and culture method for culturing Haematococcus pluvialis by using brewery wastewater. Patent no CN103966103AGoogle Scholar
  147. Wang B, Zarka A, Trebst A, Boussiba S (2003) Astaxanthin accumulation in Haematococcus pluvialis(Chlorophyceae) as an active photoprotective process under high irradiance. J Phycol 39:1116–1124CrossRefGoogle Scholar
  148. Wang JF, Han DX, Sommerfeld MR, Lu CM, Hu Q (2013a) Effect of initial biomass density on growth and astaxanthin production of Haematococcus pluvialis in an outdoor photobioreactor. J Appl Phycol 25:253–260.  https://doi.org/10.1007/s10811-012-9859-4CrossRefGoogle Scholar
  149. Wang JF, Sommerfeld MR, Lu CM, Hu Q (2013b) Combined effect of initial biomass density and nitrogen concentration on growth and astaxanthin production of Haematococcus pluvialis (Chlorophyta) in outdoor cultivation. Algae 28:193–202CrossRefGoogle Scholar
  150. Wayama M, Ota S, Matsuura H, Nango N, Hirata A, Kawano S (2013) Three-dimensional ultrastructural study of oil and astaxanthin accumulation during encystment in the green alga Haematococcus pluvialis. PLoS One 8:e53618.  https://doi.org/10.1371/journal.pone.0053618CrossRefGoogle Scholar
  151. Wilkie AC, Mulbry WW (2002) Recovery of dairy manure nutrients by benthic freshwater algae. Bioresour Technol 84:81–91CrossRefGoogle Scholar
  152. Woertz IC, Benemann JR, Du N, Unnasch S, Mendola D, Mitchell BG, Lundquist TJ (2014) Life cycle GHG emissions from microalgal biodiesel–a CA-GREET model. Environ Sci Technol 48:6060–6068CrossRefGoogle Scholar
  153. Wu YH, Yang J, Hu HY, Yu Y (2013) Lipid-rich microalgal biomass production and nutrient removal by Haematococcus pluvialis in domestic secondary effluent. Ecol Eng 60:155–159.  https://doi.org/10.1016/j.ecoleng.2013.07.066CrossRefGoogle Scholar
  154. Yamashita E (2002) Cosmetic benefit of dietary supplements containing astaxanthin and tocotrienol on human skin. Food Style 21:112–117Google Scholar
  155. Yang Y, Kim B, Lee JY (2013) Astaxanthin structure, metabolism, and health benefits. J Hum Nutr Food Sci 1003:1–11Google Scholar
  156. Yin S, Wang J, Chen L, Liu T (2015) The water footprint of biofilm cultivation of Haematococcus pluvialis is greatly decreased by using sealed narrow chambers combined with slow aeration rate. Biotechnol Lett 37:1819–1827CrossRefGoogle Scholar
  157. Yoo JJ, Choi SP, Kim BW, Sim SJ (2012) Optimal design of scalable photobioreactor for phototropic culturing of Haematococcus pluvialis. Bioprocess Biosyst Eng 35:309–315CrossRefGoogle Scholar
  158. Yu X, Chen L, Zhang W (2015) Chemicals to enhance microalgal growth and accumulation of high-value bioproducts. Front Microbiol 6:56Google Scholar
  159. Yuan JP, Peng J, Yin K, Wang JH (2011) Potential health promoting effects of astaxanthin: a high-value carotenoid mostly from microalgae. Mol Nutr Food Res 55:150–165CrossRefGoogle Scholar
  160. Zhang B, Geng Y, Li Z, Hu H, Li Y (2009) Production of astaxanthin from Haematococcus in open pond by two-stage growth one-step process. Aquaculture 295:275–281CrossRefGoogle Scholar
  161. Zhang W, Wang J, Wang J, Liu T (2014) Attached cultivation of Haematococcus pluvialis for astaxanthin production. Bioresour Technol 158:329–335CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Md Mahfuzur Rahman Shah
    • 1
  1. 1.Excel Career CollegeCourtenayCanada

Personalised recommendations