Advertisement

Valorization of Nutrient-Rich Urinal Wastewater by Microalgae for Biofuel Production

  • R. Yukesh Kannah
  • J. Merrylin
  • Preethi
  • P. Sivashanmugam
  • M. Gunasekaran
  • Gopalakrishnan Kumar
  • J. Rajesh Banu
Chapter

Abstract

Cultivation of microalgae in the fresh water is not economically feasible, because it requires essential nutrient and light energy for effective biomass yield. Microalgae biomass is capable of valorizing organic and inorganic matter in the wastewater for biofuel yield. Microalgae biomass use freely available solar radiation as light energy and organic and inorganic matter from wastewater as a nutrient source. Direct discharge of urinal wastewater into the environment leads to groundwater contamination. Urinal wastewater mainly composed of essential nutrients such as nitrogen, phosphorus, and potassium. Hence microalgae biomass cultivation is the best option to reduce the inorganic constituent load, and it even biodegrades certain heavy metals. Recovering the freely available nutrients in urinal wastewater by microalgae results in the valuable end product. In addition, the biofuel production from microalgae biomass through anaerobic digestion was a promising technology. The rigid cell wall of microalgae biomass needs to be disintegrated for improving its biodegradability, and the microalgae cultivation with urinal wastewater will be economically viable. This chapter provides the knowledge about nutrient removal from urinal wastewater using microalgae and various types of hydrolysis used for biofuel generation.

Keywords

Urinal Microalgae Biofuel Hydrolysis Wastewater 

References

  1. Adamsson M (2000) Potential use of human urine by greenhouse culturing of microalgae (Scenedesmus acuminatus), zooplankton (Daphnia magna) and tomatoes (Lycopersicon). Ecol Eng 16:243–254CrossRefGoogle Scholar
  2. Akgül F, Kizilkaya İT, Akgül R, Erduğan H (2017) Morphological and molecular characterization of scenedesmus-like species from Ergene River Basin (Thrace, Turkey). Turk J Fish Aquat Sci 17:609–619CrossRefGoogle Scholar
  3. Akhtar N, Iqbal J, Iqbal M (2004) Removal and recovery of nickel (II) from aqueous solution by loofa sponge-immobilized biomass of Chlorella sorokiniana: characterization studies. J Hazard Mater 108:85–94CrossRefGoogle Scholar
  4. Atkinson B (1986) Process engineering aspects of immobilized cell systems (Vol. 320, pp. 3–19). Institution of Chemical Engineers, OxfordGoogle Scholar
  5. Banu JR, Do Khac U, Kumar SA, Ick-Tae Y, Kaliappan S (2012) A novel method of sludge pretreatment using the combination of alkalis. J Environ Biol 33:249Google Scholar
  6. Bhuiyan MIH, Mavinic DS, Koch FA (2008) Phosphorus recovery from wastewater through struvite formation in fluidized bed reactors: a sustainable approach. Water Sci Technol 57:175–181CrossRefGoogle Scholar
  7. Bock C, Krienitz L, Pröschold T (2011) Taxonomic reassessment of the genus Chlorella (Trebouxiophyceae) using molecular signatures (barcodes), including description of seven new species. Fottea 11:293–312CrossRefGoogle Scholar
  8. Broch A, Jena U, Hoekman SK, Langford J (2013) Analysis of solid and aqueous phase products from hydrothermal carbonization of whole and lipid-extracted algae. Energies 7:62–79CrossRefGoogle Scholar
  9. Budarin V, Ross AB, Biller P, Riley R, Clark JH, Jones JM, Gilmour DJ, Zimmerman W (2012) Microalgae biorefinery concept based on hydrothermal microwave pyrolysis. Green Chem 14:3251–3254CrossRefGoogle Scholar
  10. Burdin KS, Bird KT (1994) Heavy metal accumulation by carrageenan and agar producing algae. Bot Mar 37:467–470CrossRefGoogle Scholar
  11. Canizares RO, Domínguez AR, Rivas L, Montes MC, Travieso L, Benítez F (1993) Free and immobilized cultures of Spirulina maxima for swine waste treatment. Biotechnol Lett 15:321–326CrossRefGoogle Scholar
  12. Capodaglio AG (2017) Integrated, decentralized wastewater management for resource recovery in rural and peri-urban areas. Resources 6:22CrossRefGoogle Scholar
  13. Chang Y, Wu Z, Bian L, Feng D, Leung DYC (2013) Cultivation of Spirulina platensis for biomass production and nutrient removal from synthetic human urine. Appl Energy 102:427–431CrossRefGoogle Scholar
  14. Cheah WY, Ling TC, Show PL, Juan JC, Chang J-S, Lee D-J (2016) Cultivation in wastewaters for energy: a microalgae platform. Appl Energy 179:609–625Google Scholar
  15. Chew KW, Yap JY, Show PL, Suan NH, Juan JC, Ling TC, Lee D-J, Chang J-S (2017) Microalgae biorefinery: high value products perspectives. Bioresour Technol 229:53–62CrossRefGoogle Scholar
  16. Cho S, Park S, Seon J, Yu J, Lee T (2013) Evaluation of thermal, ultrasonic and alkali pretreatments on mixed-microalgal biomass to enhance anaerobic methane production. Bioresour Technol 143:330–336CrossRefGoogle Scholar
  17. Choi J-A, Hwang J-H, Dempsey BA, Abou-Shanab RAI, Min B, Song H, Lee DS, Kim JR, Cho Y, Hong S, Jeon B-H (2011) Enhancement of fermentative bioenergy (ethanol/hydrogen) production using ultrasonication of Scenedesmus obliquus YSW15 cultivated in swine wastewater effluent. Energy Environ Sci 4:3513–3520.  https://doi.org/10.1039/C1EE01068ACrossRefGoogle Scholar
  18. Codd GA (1987) Immobilized micro-algae and cyanobacteria. Br Phycol Soc Newsl 24:1–5Google Scholar
  19. Cohen Y (2001) Biofiltration–the treatment of fluids by microorganisms immobilized into the filter bedding material: a review. Bioresour Technol 77:257–274CrossRefGoogle Scholar
  20. Coppens J, Lindeboom R, Muys M, Coessens W, Alloul A, Meerbergen K, Lievens B, Clauwaert P, Boon N, Vlaeminck SE (2016) Nitrification and microalgae cultivation for two-stage biological nutrient valorization from source separated urine. Bioresour Technol 211:41–50CrossRefGoogle Scholar
  21. Dadheech PK, Ballot A, Casper P, Kotut K, Novelo E, Lemma B, Pröschold T, Krienitz L (2010) Phylogenetic relationship and divergence among planktonic strains of Arthrospira (Oscillatoriales, Cyanobacteria) of African, Asian and American origin deduced by 16S–23S ITS and phycocyanin operon sequences. Phycologia 49:361–372CrossRefGoogle Scholar
  22. De-Bashan LE, Moreno M, Hernandez J-P, Bashan Y (2002) Removal of ammonium and phosphorus ions from synthetic wastewater by the microalgae Chlorella vulgaris coimmobilized in alginate beads with the microalgae growth-promoting bacterium Azospirillum brasilense. Water Res 36:2941–2948CrossRefGoogle Scholar
  23. Dębowski M, Szwaja S, Zieliński M, Kisielewska M, Stańczyk-Mazanek E (2017) The influence of anaerobic digestion effluents (ADEs) used as the nutrient sources for Chlorella sp. cultivation on fermentative biogas production. Waste Biomass Valoriz 8:1153–1161CrossRefGoogle Scholar
  24. Delgadillo-Mirquez L, Lopes F, Taidi B, Pareau D (2016) Nitrogen and phosphate removal from wastewater with a mixed microalgae and bacteria culture. Biotechnol Rep 11:18–26CrossRefGoogle Scholar
  25. Dodd MC, Zuleeg S, von Gunten U, Pronk W (2008) Ozonation of source-separated urine for resource recovery and waste minimization: process modeling, reaction chemistry, and operational considerations. Environ Sci Technol 42:9329–9337CrossRefGoogle Scholar
  26. Ebenezer AV, Arulazhagan P, Kumar SA, Yeom I-T, Banu JR (2015) Effect of deflocculation on the efficiency of low-energy microwave pretreatment and anaerobic biodegradation of waste activated sludge. Appl Energy 145:104–110CrossRefGoogle Scholar
  27. Ekendahl S, Bark M, Engelbrektsson J, Karlsson C-A, Niyitegeka D, Strömberg N (2018) Energy-efficient outdoor cultivation of oleaginous microalgae at northern latitudes using waste heat and flue gas from a pulp and paper mill. Algal Res 31:138–146CrossRefGoogle Scholar
  28. Ekpo U, Ross AB, Camargo-Valero MA, Williams PT (2016) A comparison of product yields and inorganic content in process streams following thermal hydrolysis and hydrothermal processing of microalgae, manure and digestate. Bioresour Technol 200:951–960CrossRefGoogle Scholar
  29. Eroglu E, Agarwal V, Bradshaw M, Chen X, Smith SM, Raston CL, Iyer KS (2012) Nitrate removal from liquid effluents using microalgae immobilized on chitosan nanofiber mats. Green Chem 14:2682–2685CrossRefGoogle Scholar
  30. Ertesvåg H, Valla S (1998) Biosynthesis and applications of alginates. Polym Degrad Stab 59:85–91CrossRefGoogle Scholar
  31. Falco C, Sevilla M, White RJ, Rothe R, Titirici M (2012) Renewable nitrogen-doped hydrothermal carbons derived from microalgae. ChemSusChem 5:1834–1840CrossRefGoogle Scholar
  32. Feng D, Wu Z, Wang D (2007) Effects of N source and nitrification pretreatment on growth of Arthrospira platensis in human urine. J Zhejiang Univ A 8:1846–1852CrossRefGoogle Scholar
  33. Fierro S, del Pilar Sánchez-Saavedra M, Copalcua C (2008) Nitrate and phosphate removal by chitosan immobilized Scenedesmus. Bioresour Technol 99:1274–1279CrossRefGoogle Scholar
  34. Ge S, Champagne P, Plaxton WC, Leite GB, Marazzi F (2017) Microalgal cultivation with waste streams and metabolic constraints to triacylglycerides accumulation for biofuel production. Biofuels Bioprod Biorefin 11:325–343CrossRefGoogle Scholar
  35. Ge S, Qiu S, Tremblay D, Viner K, Champagne P, Jessop PG (2018) Centrate wastewater treatment with Chlorella vulgaris: simultaneous enhancement of nutrient removal, biomass and lipid production. Chem Eng J 342:310–320CrossRefGoogle Scholar
  36. George Thomas D, Minj N, Mohan DN, Rao P (2016) Cultivation of microalgae in domestic wastewater for biofuel applications – An upstream approach. J Algal Biomass Utln 7:62–70Google Scholar
  37. Gethke K, Herbst H, Pinnekamp J (2007) Human urine-decomposition processes and nutrient recovery. GEWASSERSCHUTZ WASSER ABWASSER 206:36Google Scholar
  38. Gòdia F, Albiol J, Montesinos JL, Pérez J, Creus N, Cabello F, Mengual X, Montras A, Lasseur C (2002) MELISSA: a loop of interconnected bioreactors to develop life support in Space. J Biotechnol 99:319–330CrossRefGoogle Scholar
  39. Gómez-Guzmán A, Jiménez-Magaña S, Guerra-Rentería AS, Gómez-Hermosillo C, Parra-Rodríguez FJ, Velázquez S, Aguilar-Uscanga BR, Solis-Pacheco J, González-Reynoso O (2017) Evaluation of nutrients removal (NO3-N, NH3-N and PO4-P) with Chlorella vulgaris, Pseudomonas putida, Bacillus cereus and a consortium of these microorganisms in the treatment of wastewater effluents. Water Sci Technol 76:49–56CrossRefGoogle Scholar
  40. González-Fernández C, Sialve B, Bernet N, Steyer JP (2012) Comparison of ultrasound and thermal pretreatment of Scenedesmus biomass on methane production. Bioresour Technol 110:610–616CrossRefGoogle Scholar
  41. Gualtieri P, Barsanti L, Passarelli V (1988) Chitosan as flocculant for concentrating Euglena gracilis cultures. Ann Inst Pasteur Microbiol 139:717–726CrossRefGoogle Scholar
  42. Hanæus J, Hellström D, Johansson E (1997) A study of a urine separation system in an ecological village in northern Sweden. Water Sci Technol 35:153–160CrossRefGoogle Scholar
  43. Harun R, Danquah MK (2011) Influence of acid pre-treatment on microalgal biomass for bioethanol production. Process Biochem 46:304–309CrossRefGoogle Scholar
  44. Hattab MA, Ghaly A (2015) Microalgae oil extraction pre-treatment methods: critical review and comparative analysis. J Fundam Renew Energy Appl 5:172CrossRefGoogle Scholar
  45. He S, Fan X, Katukuri NR, Yuan X, Wang F, Guo R-B (2016) Enhanced methane production from microalgal biomass by anaerobic bio-pretreatment. Bioresour Technol 204:145–151CrossRefGoogle Scholar
  46. Heinonen-Tanski H, van Wijk-Sijbesma C (2005) Human excreta for plant production. Bioresour Technol 96:403–411CrossRefGoogle Scholar
  47. Hena S, Fatimah S, Tabassum S (2015) Cultivation of algae consortium in a dairy farm wastewater for biodiesel production. Water Resour Ind 10:1–14CrossRefGoogle Scholar
  48. Hernández D, Riaño B, Coca M, García-González MC (2015) Saccharification of carbohydrates in microalgal biomass by physical, chemical and enzymatic pre-treatments as a previous step for bioethanol production. Chem Eng J 262:939–945CrossRefGoogle Scholar
  49. Herrmann T, Klaus U (1997) Fluxes of nutrients in urban drainage systems: assessment of sources, pathways and treatment techniques. Water Sci Technol 36:167–172CrossRefGoogle Scholar
  50. Ho S-H, Huang S-W, Chen C-Y, Hasunuma T, Kondo A, Chang J-S (2013) Bioethanol production using carbohydrate-rich microalgae biomass as feedstock. Bioresour Technol 135:191–198CrossRefGoogle Scholar
  51. Höglund C (2001) Evaluation of microbial health risks associated with the reuse of source-separated human urine. PhD Thesis. Department of Biotechnology, Royal Institute of Technology, Stockholm.Google Scholar
  52. House D (1981) Biogas handbook, 2nd edn. Peace Press, Los AngelesGoogle Scholar
  53. Huang G, Wang Y (2003) Nitrate and phosphate removal by co-immobilized Chlorella pyrenoidosa and activated sludge at different pH values. Water Qual Res J Can 38:541–551CrossRefGoogle Scholar
  54. Hupfauf B, Süß M, Dumfort A, Fuessl-Le H (2016) Cultivation of microalgae in municipal wastewater and conversion by hydrothermal carbonization: a review. ChemBioEng Rev 3:186–200CrossRefGoogle Scholar
  55. Islam MA, Heimann K, Brown RJ (2017) Microalgae biodiesel: current status and future needs for engine performance and emissions. Renew Sust Energ Rev 79:1160–1170CrossRefGoogle Scholar
  56. Jaatinen S, Lakaniemi A-M, Rintala J (2016) Use of diluted urine for cultivation of Chlorella vulgaris. Environ Technol 37:1159–1170CrossRefGoogle Scholar
  57. Jena U, Das KC, Kastner JR (2011) Effect of operating conditions of thermochemical liquefaction on biocrude production from Spirulina platensis. Bioresour Technol 102:6221–6229CrossRefGoogle Scholar
  58. Jia Y, Wang C, Zhang C (2011) Effect of immobilization on growth of microalgae and removal of nitrogen from urine. In: Remote sensing, environment and transportation engineering (RSETE), 2011 international conference on. IEEE, pp 4939–4942Google Scholar
  59. Jimenez-Perez MV, Sanchez-Castillo P, Romera O, Fernandez-Moreno D, Pérez-Martınez C (2004) Growth and nutrient removal in free and immobilized planktonic green algae isolated from pig manure. Enzym Microb Technol 34:392–398CrossRefGoogle Scholar
  60. Jönsson H, Stintzing AR, Vinnerås B, Salomon E (2004) Guidelines on the use of urine and faeces in crop production. EcoSanRes Programme (Stockholm Environment Institute) Stockholm SwedenGoogle Scholar
  61. Jönsson H, Baky A, Jeppsson U, Hellström D, Kärrman E (2005) Composition of urine, feaces, greywater and biowaste for utilisation in the URWARE model. Urban Water Rep 2005, 1–49 Google Scholar
  62. Kannah RY, Velu C, Rajesh Banu J, Heimann K, Karthikeyan OP (2018) In: Singhania RR, Agarwal RA, Kumar RP, Sukumaran RK (eds) Food waste valorization by microalgae BT – waste to wealth. Springer, Singapore, pp 319–342Google Scholar
  63. Kavitha S, Jayashree C, Kumar SA, Kaliappan S, Banu JR (2014) Enhancing the functional and economical efficiency of a novel combined thermo chemical disperser disintegration of waste activated sludge for biogas production. Bioresour Technol 173:32–41CrossRefGoogle Scholar
  64. Kavitha S, Yukesh Kannah R, Yeom IT, Do KU, Banu JR (2015) Combined thermo-chemo-sonic disintegration of waste activated sludge for biogas production. Bioresour Technol 197:383–392CrossRefGoogle Scholar
  65. Kavitha S, Banu JR, Kumar JV, Rajkumar M (2016a) Improving the biogas production performance of municipal waste activated sludge via disperser induced microwave disintegration. Bioresour Technol 217:21–27CrossRefGoogle Scholar
  66. Kavitha S, Pray SS, Yogalakshmi KN, Kumar SA, Yeom I-T (2016b) Effect of chemo-mechanical disintegration on sludge anaerobic digestion for enhanced biogas production. Environ Sci Pollut Res 23:2402–2414CrossRefGoogle Scholar
  67. Kavitha S, Rajesh Banu J, Ivin Shaju CD, Kaliappan S, Yeom IT (2016c) Fenton mediated ultrasonic disintegration of sludge biomass: Biodegradability studies, energetic assessment, and its economic viability. Bioresour Technol 221:1–8CrossRefGoogle Scholar
  68. Kavitha S, Preethi J, Rajesh Banu J, Yeom IT (2017a) Low temperature thermochemical mediated energy and economically efficient biological disintegration of sludge: simulation and prediction studies for anaerobic biodegradation. Chem Eng J 317:481–492CrossRefGoogle Scholar
  69. Kavitha S, Subbulakshmi P, Rajesh Banu J, Gobi M, Tae Yeom I (2017b) Enhancement of biogas production from microalgal biomass through cellulolytic bacterial pretreatment. Bioresour Technol 233:34–43CrossRefGoogle Scholar
  70. Kavitha S, Yukesh Kannah R, Rajesh Banu J, Kaliappan S, Johnson M (2017c) Biological disintegration of microalgae for biomethane recovery-prediction of biodegradability and computation of energy balance. Bioresour Technol 244:1367–1375CrossRefGoogle Scholar
  71. Kavitha S, Rajesh Banu J, Kumar G, Kaliappan S, Yeom IT (2018) Profitable ultrasonic assisted microwave disintegration of sludge biomass: modelling of biomethanation and energy parameter analysis. Bioresour Technol 254:203–213CrossRefGoogle Scholar
  72. Kirchmann H, Pettersson S (1994) Human urine-chemical composition and fertilizer use efficiency. Fertil Res 40:149–154CrossRefGoogle Scholar
  73. Kumar MD, Tamilarasan K, Kaliappan S, Banu JR, Rajkumar M, Kim SH (2018) Surfactant assisted disperser pretreatment on the liquefaction of Ulva reticulata and evaluation of biodegradability for energy efficient biofuel production through nonlinear regression modelling. Bioresour Technol 255:116–122CrossRefGoogle Scholar
  74. Larsen TA, Lienert J, Joss A, Siegrist H (2004) How to avoid pharmaceuticals in the aquatic environment. J Biotechnol 113:295–304CrossRefGoogle Scholar
  75. Lee J-Y, Yoo C, Jun S-Y, Ahn C-Y, Oh H-M (2010) Comparison of several methods for effective lipid extraction from microalgae. Bioresour Technol 101:S75–S77CrossRefGoogle Scholar
  76. Liu Y-K, Seki M, Tanaka H, Furusaki S (1998) Characteristics of loofa (Luffa cylindrica) sponge as a carrier for plant cell immobilization. J Ferment Bioeng 85:416–421CrossRefGoogle Scholar
  77. Liu J, Song Y, Liu Y, Ruan R (2015) Fungal pretreatment of effluent from piggery anaerobic digestion by Phanerochaete chrysosporium. Clean: Soil Air Water 43:1190–1196Google Scholar
  78. Lubian LM (1989) Concentrating cultured marine microalgae with chitosan. Aquac Eng 8:257–265CrossRefGoogle Scholar
  79. Luo Y, Le-Clech P, Henderson RK (2017) Simultaneous microalgae cultivation and wastewater treatment in submerged membrane photobioreactors: a review. Algal Res 24:425–437CrossRefGoogle Scholar
  80. Maggi F, Daly E (2013) Decomposition pathways and rates of human urine in soils. J Agr Food Chem 61:6175–6186CrossRefGoogle Scholar
  81. Martín Juárez J, Lorenzo Hernando A, Muñoz Torre R, Blanco Lanza S, Bolado Rodríguez S (2016) Saccharification of microalgae biomass obtained from wastewater treatment by enzymatic hydrolysis. Effect of alkaline-peroxide pretreatment. Bioresour Technol 218:265–271CrossRefGoogle Scholar
  82. Maurer M, Pronk W, Larsen TA (2006) Treatment processes for source-separated urine. Water Res 40:3151–3166CrossRefGoogle Scholar
  83. Mbir BI, Mensah AJK (2017) The wastewater nutrient removal efficiences of Chlorella sorokiniana and Scenedesmus obtusiusculus. Bioprocess Eng 1:69–76Google Scholar
  84. Mendez L, Mahdy A, Timmers RA, Ballesteros M, González-Fernández C (2013) Enhancing methane production of Chlorella vulgaris via thermochemical pretreatments. Bioresour Technol 149:136–141CrossRefGoogle Scholar
  85. Miranda JR, Passarinho PC, Gouveia L (2012) Pre-treatment optimization of Scenedesmus obliquus microalga for bioethanol production. Bioresour Technol 104:342–348CrossRefGoogle Scholar
  86. Mohd Udaiyappan AF, Abu Hasan H, Takriff MS, Sheikh Abdullah SR (2017) A review of the potentials, challenges and current status of microalgae biomass applications in industrial wastewater treatment. J Water Process Eng 20:8–21CrossRefGoogle Scholar
  87. Moreira SM, Moreira-Santos M, Guilhermino L, Ribeiro R (2006) Immobilization of the marine microalga Phaeodactylum tricornutum in alginate for in situ experiments: bead stability and suitability. Enzym Microb Technol 38:135–141CrossRefGoogle Scholar
  88. Muylaert K, Beuckels A, Depraetere O, Foubert I, Markou G, Vandamme D (2015) In: Moheimani NR, McHenry MP, de Boer K, Bahri PA (eds) Wastewater as a source of nutrients for microalgae biomass production BT-biomass and biofuels from microalgae: advances in engineering and biology. Springer, Cham, pp 75–94Google Scholar
  89. Naden P, Bell V, Carnell E, Tomlinson S, Dragosits U, Chaplow J, May L, Tipping E (2016) Nutrient fluxes from domestic wastewater: a national-scale historical perspective for the UK 1800–2010. Sci Total Environ 572:1471–1484CrossRefGoogle Scholar
  90. Nayak M, Karemore A, Sen R (2016) Performance evaluation of microalgae for concomitant wastewater bioremediation, CO2 biofixation and lipid biosynthesis for biodiesel application. Algal Res 16:216–223CrossRefGoogle Scholar
  91. Niwagaba C, Nalubega M, Vinnerås B, Sundberg C, Jönsson H (2009) Bench-scale composting of source-separated human faeces for sanitation. Waste Manag 29:585–589CrossRefGoogle Scholar
  92. Ogbonna JC, Tomiyama S, Tanaka H (1996) Development of a method for immobilization of non-flocculating cells in loofa (Luffa cylindrica) sponge. Process Biochem 31:737–744CrossRefGoogle Scholar
  93. Ometto F, Quiroga G, Pšenička P, Whitton R, Jefferson B, Villa R (2014) Impacts of microalgae pre-treatments for improved anaerobic digestion: thermal treatment, thermal hydrolysis, ultrasound and enzymatic hydrolysis. Water Res 65:350–361CrossRefGoogle Scholar
  94. Oungbho K, Müller BW (1997) Chitosan sponges as sustained release drug carriers. Int J Pharm 156:229–237CrossRefGoogle Scholar
  95. Park JBK, Craggs RJ, Shilton AN (2011) Wastewater treatment high rate algal ponds for biofuel production. Bioresour Technol 102:35–42CrossRefGoogle Scholar
  96. Passos F, Ferrer I (2014) Microalgae conversion to biogas: thermal pretreatment contribution on net energy production. Environ Sci Technol 48:7171–7178CrossRefGoogle Scholar
  97. Passos F, Solé M, García J, Ferrer I (2013) Biogas production from microalgae grown in wastewater: effect of microwave pretreatment. Appl Energy 108:168–175CrossRefGoogle Scholar
  98. Piltz B, Melkonian M (2018) Immobilized microalgae for nutrient recovery from source-separated human urine. J Appl Phycol 30:421–429CrossRefGoogle Scholar
  99. Putnam DF (1971) Composition and concentrative properties of human urine.NASA contractor report: CR-1802. https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19710023044.pdf
  100. Raj SE, Banu JR, Kaliappan S, Yeom I-T, Adish Kumar S (2013) Effects of side-stream, low temperature phosphorus recovery on the performance of anaerobic/anoxic/oxic systems integrated with sludge pretreatment. Bioresour Technol 140:376–384CrossRefGoogle Scholar
  101. Rajasulochana P, Preethy V (2016) Comparison on efficiency of various techniques in treatment of waste and sewage water – a comprehensive review. Resour Technol 2:175–184Google Scholar
  102. Rajesh Banu J, Sugitha S, Kannah RY, Kavitha S, Yeom IT (2018) Marsilea spp.—a novel source of lignocellulosic biomass: effect of solubilized lignin on anaerobic biodegradability and cost of energy products. Bioresour Technol 255:220–228CrossRefGoogle Scholar
  103. Ramanna L, Rawat I, Bux F (2017) Light enhancement strategies improve microalgal biomass productivity. Renew Sust Energ Rev 80:765–773CrossRefGoogle Scholar
  104. Randall DG, Naidoo V (2018) Urine: the liquid gold of wastewater. J Environ Chem Eng 6:2627–2635CrossRefGoogle Scholar
  105. Rani RU, Kaliappan S, Kumar SA, Banu JR (2012a) Combined treatment of alkaline and disperser for improving solubilization and anaerobic biodegradability of dairy waste activated sludge. Bioresour Technol 126:107–116CrossRefGoogle Scholar
  106. Rani RU, Kumar SA, Kaliappan S, Yeom I-T, Banu JR (2012b) Low temperature thermo-chemical pretreatment of dairy waste activated sludge for anaerobic digestion process. Bioresour Technol 103:415–424CrossRefGoogle Scholar
  107. Robinson PK, Mak AL, Di Trevan M (1986) Immobilized algae; a review. Process Biochem 21: 122–127Google Scholar
  108. Rodushkin I, Ödman F (2001) Application of inductively coupled plasma sector field mass spectrometry for elemental analysis of urine. J Trace Elem Med Biol 14:241–247CrossRefGoogle Scholar
  109. Samson R, Leduy A (1983) Influence of mechanical and thermochemical pretreatments on anaerobic digestion of Spirulina maxima algal biomass. Biotechnol Lett 5:671–676CrossRefGoogle Scholar
  110. Seki H, Suzuki A (2002) Adsorption of heavy metal ions to floc-type biosorbents. J Colloid Interface Sci 249:295–300CrossRefGoogle Scholar
  111. Sharma A, Arya SK (2017) Hydrogen from algal biomass: a review of production process. Biotechnol Rep 15:63–69CrossRefGoogle Scholar
  112. Simha P, Ganesapillai M (2017) Ecological Sanitation and nutrient recovery from human urine: how far have we come? A review. Sustain Environ Res 27:107–116CrossRefGoogle Scholar
  113. Slade R, Bauen A (2013) Micro-algae cultivation for biofuels: cost, energy balance, environmental impacts and future prospects. Biomass Bioenergy 53:29–38CrossRefGoogle Scholar
  114. Smidsrød O, Skja G (1990) Alginate as immobilization matrix for cells. Trends Biotechnol 8:71–78CrossRefGoogle Scholar
  115. STOWA (2002) Separate urine collection and treatment: options for sustainable wastewater systems and mineral recovery. STOWA report no. 2001.39, UtrechtGoogle Scholar
  116. Strauss M (1985) Health aspects of nightsoil and sludge use in agriculture and aquaculture. Part III. An epidemiological perspective. IRCWD, International Reference Centre for Waste Disposal, DuebendorfGoogle Scholar
  117. Tamilarasan K, Kavitha S, Banu JR, Arulazhagan P, Yeom IT (2017) Energy-efficient methane production from macroalgal biomass through chemo disperser liquefaction. Bioresour Technol 228:156–163CrossRefGoogle Scholar
  118. Tamilarasan K, Arulazhagan P, Rani RU, Kaliappan S, Banu JR (2018) Synergistic impact of sonic-tenside on biomass disintegration potential: acidogenic and methane potential studies, kinetics and cost analytics. Bioresour Technol 253:256–261CrossRefGoogle Scholar
  119. Tango MD, Calijuri ML, Assemany PP, de Aguiar do Couto E (2018) Microalgae cultivation in agro-industrial effluents for biodiesel application: effects of the availability of nutrients. Water Sci Technol 78:wst2018180CrossRefGoogle Scholar
  120. Tosa T, Sato T, Mori T, Yamamoto K, Takata I, Nishida Y, Chibata I (1979) Immobilization of enzymes and microbial cells using carrageenan as matrix. Biotechnol Bioeng 21:1697–1709CrossRefGoogle Scholar
  121. Travieso L, Benitez F, Weiland P, Sanchez E, Dupeyron R, Dominguez AR (1996) Experiments on immobilization of microalgae for nutrient removal in wastewater treatments. Bioresour Technol 55:181–186CrossRefGoogle Scholar
  122. Travieso L, Canizares RO, Borja R, Benitez F, Dominguez AR, Valiente V (1999) Heavy metal removal by microalgae. Bull Environ Contam Toxicol 62:144–151CrossRefGoogle Scholar
  123. Tuantet K, Janssen M, Temmink H, Zeeman G, Wijffels RH, Buisman CJN (2014a) Microalgae growth on concentrated human urine. J Appl Phycol 26:287–297CrossRefGoogle Scholar
  124. Tuantet K, Temmink H, Zeeman G, Janssen M, Wijffels RH, Buisman CJN (2014b) Nutrient removal and microalgal biomass production on urine in a short light-path photobioreactor. Water Res 55:162–174CrossRefGoogle Scholar
  125. Udert KM, Larsen TA, Biebow M, Gujer W (2003) Urea hydrolysis and precipitation dynamics in a urine-collecting system. Water Res 37:2571–2582CrossRefGoogle Scholar
  126. Uma Rani R, Adish Kumar S, Kaliappan S, Yeom I, Rajesh Banu J (2013) Impacts of microwave pretreatments on the semi-continuous anaerobic digestion of dairy waste activated sludge. Waste Manag 33:1119–1127CrossRefGoogle Scholar
  127. Uma Rani R, Adish Kumar S, Kaliappan S, Yeom I-T, Rajesh Banu J (2014) Enhancing the anaerobic digestion potential of dairy waste activated sludge by two step sono-alkalization pretreatment. Ultrason Sonochem 21:1065–1074CrossRefGoogle Scholar
  128. Urrutia I, Serra JL, Llama MJ (1995) Nitrate removal from water by Scenedesmus obliquus immobilized in polymeric foams. Enzym Microb Technol 17:200–205CrossRefGoogle Scholar
  129. Ushani U, Banu JR, Kavitha S, Kaliappan S, Yeom IT (2017a) Immobilized and MgSO4 induced cost effective bacterial disintegration of waste activated sludge for effective anaerobic digestion. Chemosphere 175:66–75CrossRefGoogle Scholar
  130. Ushani U, Banu JR, Tamilarasan K, Kavitha S, Yeom IT (2017b) Surfactant coupled sonic pretreatment of waste activated sludge for energetically positive biogas generation. Bioresour Technol 241:710–719CrossRefGoogle Scholar
  131. Ushani U, Kavitha S, Yukesh Kannah R, Gunasekaran M, Kumar G, Nguyen DD, Chang SW, Rajesh Banu J (2018) Sodium thiosulphate induced immobilized bacterial disintegration of sludge: an energy efficient and cost effective platform for sludge management and biomethanation. Bioresour Technol 260:273–282CrossRefGoogle Scholar
  132. Yang C, Liu H, Li M, Yu C, Yu G (2008) Treating urine by Spirulina platensis. Acta Astronaut 63:1049–1054CrossRefGoogle Scholar
  133. Yang Z, Guo R, Xu X, Fan X, Li X (2010) Enhanced hydrogen production from lipid-extracted microalgal biomass residues through pretreatment. Int J Hydrog Energy 35:9618–9623CrossRefGoogle Scholar
  134. Zeeman G, Kujawa-Roeleveld K (2011) Resource recovery from source separated domestic waste (water) streams; full scale results. Water Sci Technol 64:1987–1992CrossRefGoogle Scholar
  135. Zeeman G, Kujawa K, De Mes T, Hernandez L, De Graaff M, Abu-Ghunmi L, Mels A, Meulman B, Temmink H, Buisman C (2008) Anaerobic treatment as a core technology for energy, nutrients and water recovery from source-separated domestic waste (water). Water Sci Technol 57:1207–1212CrossRefGoogle Scholar
  136. Zhang S, Lim CY, Chen C-L, Liu H, Wang J-Y (2014) Urban nutrient recovery from fresh human urine through cultivation of Chlorella sorokiniana. J Environ Manag 145:129–136CrossRefGoogle Scholar
  137. Zhang L, Cheng J, Pei H, Pan J, Jiang L, Hou Q, Han F (2018) Cultivation of microalgae using anaerobically digested effluent from kitchen waste as a nutrient source for biodiesel production. Renew Energy 115:276–287CrossRefGoogle Scholar
  138. Zhou W (2014) Potential applications of microalgae in wastewater treatments. In: Recent advances in microalgal biotechnology. OMICS Group ebook, Foster City, pp 1–9Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • R. Yukesh Kannah
    • 1
  • J. Merrylin
    • 2
  • Preethi
    • 1
  • P. Sivashanmugam
    • 3
  • M. Gunasekaran
    • 4
  • Gopalakrishnan Kumar
    • 5
  • J. Rajesh Banu
    • 1
  1. 1.Department of Civil EngineeringRegional Campus Anna University TirunelveliTirunelveliIndia
  2. 2.Department of Food Science and NutritionSarah Tucker CollegeTirunelveliIndia
  3. 3.Department of Chemical EngineeringNITTiruchirappalliIndia
  4. 4.Department of PhysicsRegional Campus Anna University TirunelveliTirunelveliIndia
  5. 5.School of Chemistry, Bioscience and Environmental EngineeringUniversity of StavangerStavangerNorway

Personalised recommendations