Advertisement

Use of GNSS Tropospheric Products for High-Resolution, Rapid-Update NWP and Severe Weather Forecasting (Working Group 2)

  • S. de Haan
  • E. PottiauxEmail author
  • J. Sánchez-Arriola
  • M. Bender
  • J. Berckmans
  • H. Brenot
  • C. Bruyninx
  • L. De Cruz
  • G. Dick
  • N. Dymarska
  • K. Eben
  • G. Guerova
  • J. Jones
  • P. Krč
  • M. Lindskog
  • M. Mile
  • G. Möller
  • N. Penov
  • J. Resler
  • W. Rohm
  • M. Slavchev
  • K. StoevEmail author
  • A. Stoycheva
  • E. Trzcina
  • F. Zus
Conference paper

Abstract

For more than a decade, GNSS-meteorology has been increasingly used operationally in Europe particularly for data assimilation in Numerical Weather Prediction (NWP) models, mainly thanks to the EIG EUMETNET GNSS Water Vapour Program (E-GVAP, 2005-today). As such, GNSS has become a well-established, mature observing technique for data assimilation applications. Over this period however, scientists and specialists in GNSS-meteorology noted the clear potential for enhancements and novelties in the domain. The work carried out by the COST Action ES1206 Working Group 2 members addressed these potential enhancements and novelties from the meteorological point of view, in collaboration with WG1. This included the establishment of discussion channels with forecasters in order to determine which GNSS products would be best suited for their day-to-day operational requirements. Particular areas of interest include engaging more operational forecasters (e.g. use of meteorological case studies), especially for non-numerical nowcasting of severe weather, and getting more meteorological agencies to assimilate GNSS products in regions of Europe where they were not yet/well exploited. It also included the development of the techniques and tools necessary to benefit from the brand new products developed by the Action WG1 and WG2 members, namely real-time GNSS tropospheric products for rapid-cycle NWP and non-numerical nowcasting, data assimilation of horizontal tropospheric gradients and tropospheric slant delays as well as tomographic products. Finally, the work carried out by the WG2 members brought operational improvements through dialog, transfer of knowledge, and standardisation (e.g. the new standardized tropo-SINEX format or the development of assimilation operators). The major WG2 outcomes are discussed in this Chapter.

References

  1. Askne, J., & Nordius, H. (1987, May–June). Estimation of tropospheric delay for microwaves from surface weather data. Radio Science, 22(3), 379–386.  https://doi.org/10.1029/RS022i003p00379.CrossRefGoogle Scholar
  2. Baldauf, M., Seifert, A., Förstner, J., Majewski, D., Raschendorfer, M., & Reinhardt, T. (2011). Operational convective-scale numerical weather prediction with the COSMO model: Description and sensitivities. Monthly Weather Review, 139(12), 3887–3905.Google Scholar
  3. Bennitt, G. V., & Jupp, A. (2012). Operational assimilation of GPS Zenith total delay observations into the Met office numerical weather prediction models. Monthly Weather Review, 140, 2706–2719.CrossRefGoogle Scholar
  4. Bevis, M., Businger, S., & Herring, T. (1992). GPS meteorology: Remote sensing of atmospheric water vapour using the Global Positioning System. Journal of Geophysical Research: Atmospheres, 97(D14), 15787–15801.  https://doi.org/10.1029/92JD01517.CrossRefGoogle Scholar
  5. Bevis, M., Businger, S., Chiswell, S., Herring, T., Anthes, R., Rocken, Ch., & Ware, R. (1994, March). GPS meteorology: Mapping zenith wet delays onto precipitable water. Journal of Applied Meteorology and Climatology, 33(3), 379–386.  https://doi.org/10.1175/1520-0450(1994)033%3C0379:GMMZWD%3E2.0.CO;2.CrossRefGoogle Scholar
  6. Bruyninx, C., Habrich, H., Söhne, W., Kenyeres, A., Stangl, G., & Völksen, C. (2012), Enhancement of the EUREF permanent network services and products. In Geodesy for planet Earth, vol. 136 of IAG symposia series (pp. 27–35). Springer.Google Scholar
  7. Caumont, O., Ducrocq, V., Wattrelot, É., Jaubert, G., & Pradier-Vabre, S. (2010). 1D+3DVar assimilation of radar reflectivity data: A proof of concept. Tellus A, 62, 173–187.CrossRefGoogle Scholar
  8. Chen, G., & Herring, T. (1997, September). Effects of atmospheric azimuthal asymmetry on the analysis of space geodetic data. Journal of Geophysical Research: Solid Earth, 102(B9), 20489–20502.  https://doi.org/10.1029/97JB01739.CrossRefGoogle Scholar
  9. Dach, R., Lutz, S., Walser, P., & Fridez, P. (Eds) (2015). Bernese GNSS Software Version 5.2. User manual. Astronomical Institute, University of Bern, Bern Open Publishing.  https://doi.org/10.7892/boris.72297. isbn:978-3-906813-05-9.
  10. Davis, J., Herring, T., Shapiro, I., Rogers, A., & Elgered, G. (1985, November–December). Geodesy by radio interferometry: Effects of atmospheric modelling errors on estimates of baseline length. Radio Science, 20(6), 1593–1607.  https://doi.org/10.1029/RS020i006p01593.CrossRefGoogle Scholar
  11. De Cruz, L., & Duerinckx, A.(2015, April 13–16). Assimilation of GNSS and radar data in ALARO cy38t1 at RMIB. Joint 25th ALADIN Workshop & HIRLAM All Staff Meeting, Helsingor, Denmark.Google Scholar
  12. De Cruz, L., Duerinckx, A., & Pottiaux, E. (2015, May 11–13). GNSS assimilation in NWP: Case studies for Belgium. COST ES1206 – GNSS4SWEC: 2nd Workshop, Thessaloniki, Greece.Google Scholar
  13. De Haan, S., Barlag, S., Klein Blatink, H., Debie, F., & van der Marel, H. (2004, April). Synergetic use of GPS water vapour and meteosat images for synoptic weather forecasting. Journal of Applied Meteorology and Climatology, 43(3), 514–518.  https://doi.org/10.1175/1520-0450(2004)043%3C0514:SUOGWV%3E2.0.CO;2.CrossRefGoogle Scholar
  14. De Haan, S., Holleman, I., & Holtslag, A. (2009). Real-time water vapour maps from a GPS surface network: Construction, validation, and applications. Journal of Applied Meteorology and Climatology, 48(7), 1302–1316.  https://doi.org/10.1175/2008JAMC2024.1.CrossRefGoogle Scholar
  15. E-GVAP PDR. (2010, December 21). Product requirements document v 1.0. Prepared by the Met Office. http://egvap.dmi.dk/support/formats/egvap_prd_v10.pdf
  16. Elgered, G., Davis, J., Herring, T., & Shapiro, I. (1991, April). Geodesy by radio interferometry: Water vapour radiometry for estimation of the wet delay. Journal of Geophysical Research – Solid Earth 96(B4), 6541–6555.  https://doi.org/10.1029/90JB00834.CrossRefGoogle Scholar
  17. Grams, C. M., Binder, H., Pfahl, S., Piaget, N., & Wernli, H. (2014). Atmospheric processes triggering the central European floods in June 2013. Natural Hazards and Earth System Sciences, 14(7), 1691–1702.CrossRefGoogle Scholar
  18. Guerova, G. (2013). Ground-based GNSS Meteorology: Case studies for Bulgaria/Southeast Europe. In Proceedings of the 4th International colloquium – Scientific and fundamental aspects of the Galileo programme, Prague, Czech Republic, 4–6.12.2013. http://suada.phys.uni-sofia.bg/wordpress/wp-content/uploads/2015/02/2923524_guerova.pdf
  19. Heise, S., Dick, G., Gendt, G., Schmidt, T., & Wickert, J. (2009). Integrated water vapour from IGS ground-based GPS observations: Initial results from a 5-min data set. Annales de Geophysique, 27, 2851–2859.  https://doi.org/10.5194/angeo-27-2851-2009.CrossRefGoogle Scholar
  20. Hogg, D., Guiraud, F., & Decker, M. (1981). Measurement of excess transmission length on Earth–space paths. Astronomy and Astrophysics, 95, 304–307.Google Scholar
  21. Holton, J. R. (1972). An introduction to dynamic meteorology (p. 319). New York: Academic.Google Scholar
  22. Hunt, B. R., Kostelich, E. J., & Szunyogh, I. (2007). Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman filter. Physica D: Nonlinear Phenomena, 230(1–2), 112–126.CrossRefGoogle Scholar
  23. Lindskog, M., Ridal, M., Thorsteinsson, S., & Ning, T. (2017). Data assimilation of GNSS Zenith Total Delays from a Nordic processing centre. Submitted to Atmospheric Chemistry Physics.Google Scholar
  24. Matheron, G. (1962). Traité de géostatique appliquée. Tome I, Mémoires du Bureau de Recherche Géologiques et Minières, N°14, Edt. Technip, Paris.Google Scholar
  25. Matheron, G. (1963a). Principles of Geostatics. Economic Geology, 58(8), 1246–1266.  https://doi.org/10.2113/gsecongeo.58.8.1246.CrossRefGoogle Scholar
  26. Matheron, G. (1963b). Traité de géostatique appliquée. Tome II: le Krigeage, Mémoires du Bureau de Recherche Géologiques et Minières, N°24, Edt. B. R. G. M., Paris.Google Scholar
  27. Mazany, R., Businger, S., & Gutman, S. (2002, October). A lightning prediction index that utilizes GPS integrated precipitable water vapour. Weather and Forecasting, 17, 1034–1047.Google Scholar
  28. Möller, G. (2017). Reconstruction of 3D wet refractivity fields in the lower atmosphere along bended GNSS signal paths. Dissertation, TU Wien, Department of Geodesy and Geoinformation, 211p.Google Scholar
  29. Möller, G., Wittmann, C., Yan, X., Umnig, E., Joldzic, N., & Weber, R. (2016). 3D ground based GNSS atmospheric tomography. Final Report GNSS-ATom project 840098, 49p.Google Scholar
  30. Muller, M., Homleid, M., Ivarsson, K.-I., Koltzow, M., Lindskog, M., Midtbo, K.-H., Andrae, U., Aspelien, T., Berggren, L., Bjorge, D., Dahlgren, P., Kristiansen, J., Randriamampianina, R., Ridal, M., & Vigne, O. (2017). AROME-MetCoOp: A nordic convective-scale operational weather prediction model. Weather and Forecasting, 32, 609–627.  https://doi.org/10.1175/WAF-D-16-0099.1.CrossRefGoogle Scholar
  31. Ning, T., Elgered, G., Willén, U., & Johansson, J. (2013). Evaluation of the atmospheric water vapour content in a regional climate model using ground-based GPS measurements. Journal of Geophysical Research: Atmospheres, 118(2), 329–339.  https://doi.org/10.1029/2012JD018053.CrossRefGoogle Scholar
  32. Poli, P., Moll, P., Rabier, F., Desroziers, G., Chapnik, B., Berre, L., Healy, S. B., Andersson, E., & El Guelai, F.-Z. (2007). Forecast impact studies of Zenith total delay data from European near real-time Gps stations in Météo France 4DVAR. Journal of Geophysical Research: Atmospheres, 112(D6). Wiley Online Library.Google Scholar
  33. Pottiaux, E. (2010). Sounding the Earth’s atmospheric water vapour using signals emitted by global navigation satellite systems. PhD. thesis in Sciences, 200. Université Catholique de Louvain.Google Scholar
  34. Rocken, C., Van Hove, T., Johnson, J., Solheim, F., Ware, R., Bevis, M., Chiswell, S., & Businger, S. (1995), GPS/STORM–GPS sensing of atmospheric water vapour for meteorology. Journal of Atmospheric and Oceanic Technology, 12, 468–478.  https://doi.org/10.1175/1520-0426(1995)012<0468:GSOAWV>2.0.CO;2.
  35. Saastamoinen, J. (1972). Atmospheric corrections for the troposphere and stratosphere in radio ranging of satellites. In S. W. Henriksen et al. (Eds.), The use of artificial satellites for geodesy (Monograph series) (Vol. 15, pp. 247–251). Washington DC: AGU.Google Scholar
  36. Sánchez Arriola, J., Lindskog, M., Thorsteinsson, S., & Bojarova, J. (2016). Variational bias correction of GNSS ZTD in the HARMONIE modelling system. Journal of Applied Meteorology and Climatology, 55, 1259–1276.  https://doi.org/10.1175/JAMC-D-15-0137.1.CrossRefGoogle Scholar
  37. Schraff, C., Reich, H., Rhodin, A., Schomburg, A., Stephan, K., Periáñez, A., & Potthast, R. (2016). Kilometre-scale ensemble data assimilation for the COSMO model (KENDA). Quarterly Journal of the Royal Meteorological Society, 142(696), 1453–1472.Google Scholar
  38. Seidel, D. J., Ao, C. O., & Li, K. (2010). Estimating climatological planetary boundary layer heights from radiosonde observations: Comparison of methods and uncertainty analysis. Journal of Geophysical Research Atmospheres, 115(D16).Google Scholar
  39. Smet, G., Termonia, P., & Deckmyn, A. (2012). Added economic value of limited area multi-EPS weather forecasting applications. Tellus A, 64, 18901.CrossRefGoogle Scholar
  40. Smith, E., & Weintraub, S. (1953, August), The constants in the equation for atmospheric refractive index at radio frequencies. Proceedings of the IRE, 41(8), 1035–1037.  https://doi.org/10.1109/JRPROC.1953.274297.CrossRefGoogle Scholar
  41. Smith, W., & Wessel, P. (1990, March). Gridding with continuous curvature splines in tension. Geophysics, 55(3), 293–305.  https://doi.org/10.1190/1.1442837.CrossRefGoogle Scholar
  42. Stephan, K., Klink, S., & Schraff, C. (2008). Assimilation of radar-derived rain rates into the convective-scale model COSMO-DE at DWD. Quarterly Journal of the Royal Meteorological Society, 134(634), 1315–1326.CrossRefGoogle Scholar
  43. Stoev, K., & Guerova, G. (2017). Climatology of the foehn in Sofia for 1975–2014. International Journal of Climatology. In review 9/2017. http://suada.phys.uni-sofia.bg/?page_id=3801
  44. Stoycheva, А., & Guerova, G. (2015). Study of fog in Bulgaria by using the GNSS tropospheric products and large scale dynamic analysis. Journal of Atmospheric and Solar-Terrestrial Physics, 133, 87–97.  https://doi.org/10.1016/j.jastp.2015.08.004.CrossRefGoogle Scholar
  45. Stoycheva, A., Manafov, I., Vassileva, K., & Guerova, G. (2017). Study of persistent fog in Bulgaria with Sofi a Stability Index, GNSS tropospheric products and WRF simulations. Journal of Atmospheric and Solar-Terrestrial Physics, 161, 160–169.  https://doi.org/10.1016/j.jastp.2017.06.011.CrossRefGoogle Scholar
  46. Stull, R. (1995). Meteorology today for scientists and engineers (385 p). Minneapolis: West Publishing.Google Scholar
  47. Van Malderen, R., Brenot, H., Pottiaux, E., Beirle, S., Hermans, C., De Mazière, M., Wagner, T., De Backer, H., & Bruyninx, C. (2014). A multi-site techniques intercomparison of integrated water vapour observations for climate change analysis. Atmospheric Measurement Techniques Discussions, 7, 1075–1151.  https://doi.org/10.5194/amtd-7-1075-2014.CrossRefGoogle Scholar
  48. Vedel, H., Huang, X. Y., Haase, J., Ge, M., & Calais, E. (2004). Impact of GPS Zenith tropospheric delay data on precipitation forecasts in Mediterranean France and Spain. Geophysical Research Letters, 31(2), 2004.CrossRefGoogle Scholar
  49. Vey, S., Dietrich, R., Fritsche, M., Rülke, A., Steigenberger, P., & Rothacher, M. (2009, May). On the homogeneity and interpretation of precipitable water time series derived from global GPS observations. Journal of Geophysical Research Atmospheres, 114(D10).  https://doi.org/10.1029/2008JD010415.
  50. Wang, J., Zhang, L., & Dai, A. (2005). Global estimates of water-vapour-weighted mean temperature of the atmosphere for GPS applications. Journal Geophysical Research, 110, D21101.  https://doi.org/10.1029/2005JD006215.CrossRefGoogle Scholar
  51. Wang, J., Zhang, L., Dai, A., van Hove, T., & van Baelen, J. (2007, June). A near-global, 2-hourly data set of atmospheric precipitable water from ground-based GPS measurements. Journal of Geophysical Research Atmospheres, 112(D11).  https://doi.org/10.1029/2006JD007529.
  52. Wang, X., Barker, Snyder, C., & Hamill, T. M. (2008). A hybrid ETKF–3DVAR data assimilation scheme for the WRF Model. Part I: Observing system simulation experiment. Monthly Weather Review, 136, 5116–5131.CrossRefGoogle Scholar
  53. Watson, D. (1982). Acord: Automatic contouring of raw data. Computers and Geosciences, 8(1), 97–101.  https://doi.org/10.1016/0098-3004(82)90039-5.CrossRefGoogle Scholar
  54. Wattrelot, E., Caumont, O., & Mahfouf, J. F. (2014). Operational implementation of the 1D+ 3D-Var assimilation method of radar reflectivity data in the AROME model. Monthly Weather Review, 142(5), 1852–1873.CrossRefGoogle Scholar
  55. Yan, X., Ducrocq, V., Poli, P., Jaubert, G., & Walpersdorf, A. (2008). Mesoscale GPS Zenith delay assimilation during a Mediterranean heavy precipitation event. Advances in Geosciences, 17, 71–77.CrossRefGoogle Scholar
  56. Yan, X., Ducrocq, V., Poli, P., Hakam, M., Jaubert, G., & Walpersdorf, A. (2009). Impact of GPS zenith delay assimilation on convective-scale prediction of Mediterranean heavy rainfall. Journal of Geophysical Research, 114(D03104), 2009.Google Scholar
  57. Zus, F., Bender, M., Deng, Z., Dick, G., Heise, S., Shang-Guan, M., & Wickert, J. (2012). A methodology to compute GPS slant total delays in a numerical weather model. Radio Science, 47, RS2018.Google Scholar
  58. Zus, F., Dick, G., Heise, S., & Wickert, J. (2014). A forward operator and its adjoint for GPS slant total delays. Radio Science, 50(5), 393–405.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • S. de Haan
    • 6
  • E. Pottiaux
    • 5
    Email author
  • J. Sánchez-Arriola
    • 1
  • M. Bender
    • 2
  • J. Berckmans
    • 3
  • H. Brenot
    • 4
  • C. Bruyninx
    • 5
  • L. De Cruz
    • 3
  • G. Dick
    • 7
  • N. Dymarska
    • 9
  • K. Eben
    • 10
  • G. Guerova
    • 11
  • J. Jones
    • 12
  • P. Krč
    • 10
  • M. Lindskog
    • 13
  • M. Mile
    • 14
  • G. Möller
    • 9
  • N. Penov
    • 15
  • J. Resler
    • 10
  • W. Rohm
    • 16
  • M. Slavchev
    • 17
  • K. Stoev
    • 15
    Email author
  • A. Stoycheva
    • 17
  • E. Trzcina
    • 16
  • F. Zus
    • 8
  1. 1.AEMETSantanderSpain
  2. 2.Deutscher WetterdienstOffenbachGermany
  3. 3.Royal Meteorological Institute of BelgiumBrusselsBelgium
  4. 4.Royal Belgian Institute for Space AeronomyUccleBelgium
  5. 5.Royal Observatory of BelgiumBrusselsBelgium
  6. 6.Royal Netherlands Meteorological InstituteDe BiltThe Netherlands
  7. 7.GFZ German Research Centre for GeosciencesHelmholtz Centre PotsdamPotsdamGermany
  8. 8.GFZ German Research Centre for GeosciencesPotsdamGermany
  9. 9.Department of Geodesy and Geoinformation, TU WienWienAustria
  10. 10.Institute of Computer Science of the Czech Academy of SciencesPragueCzech Republic
  11. 11.Physics Faculty, Department of Meteorology and GeophysicsSofia University “St. Kliment Ohridski”SofiaBulgaria
  12. 12.Met OfficeExeterUK
  13. 13.Swedish Meteorological and Hydrological InstituteNorrkopingSweden
  14. 14.Hungarian Meteorological ServiceBudapestHungary
  15. 15.GNSS Meteorology Group Sofia University “St. Kliment Ohridski”SofiaBulgaria
  16. 16.Institute of Geodesy and Geoinformatics, Wrocław University of Environmental and Life SciencesWrocławPoland
  17. 17.National Institute of Meteorology and HydrologySofiaBulgaria

Personalised recommendations