Advertisement

High-Resolution Remote Sensing Data as a Boundary Object to Facilitate Interdisciplinary Collaboration

  • T. Trevor CaughlinEmail author
  • Sarah J. Graves
  • Gregory P. Asner
  • Bryan C. Tarbox
  • Stephanie A. Bohlman
Chapter

Abstract

Native forest regrowth in degraded tropical landscapes is critical for biodiversity conservation, carbon sequestration, and human livelihoods. However, social and ecological drivers of reforestation have primarily been studied in separate disciplinary frameworks and at different spatial scales. In southwestern Panama, we found that scale mismatches between satellite data used to study land cover change, forest inventory plots used to study ecological dynamics, and household survey data used to study farmer behavior were a major impediment to our research goals. We overcame the challenges posed by scale mismatches by applying high-resolution remote sensing data to facilitate interdisciplinary research. We describe how our data sources enabled us to scale up ecological field data, present our research to stakeholders, and resolve discrepancies between data at different scales. High-resolution imagery can thus facilitate boundary crossing via cross-scale research on coupled natural-human systems.

Notes

Acknowledgements

Funding for the social-ecological research was provided by the National Science Foundation under grant #1415297 in the SBE program. The CAO has been made possible by grants and donations to G.P. Asner from the Avatar Alliance Foundation, Margaret A. Cargill Foundation, David and Lucile Packard Foundation, Gordon and Betty Moore Foundation, Grantham Foundation for the Protection of the Environment, W. M. Keck Foundation, John D. and Catherine T. MacArthur Foundation, Andrew Mellon Foundation, Mary Anne Nyburg Baker and G. Leonard Baker Jr, and William R. Hearst III.

References

  1. Aide, T. M., & Grau, H. R. (2004). Globalization, Migration, and Latin American Ecosystems. Science (Washington), 305(5692), 1915–1916.Google Scholar
  2. Aide, T. M., Clark, M. L., Grau, H. R., López-Carr, D., Levy, M. A., Redo, D., et al. (2013). Deforestation and Reforestation of Latin America and the Caribbean (2001–2010). Biotropica, 45(2), 262–271.  https://doi.org/10.1111/j.1744-7429.2012.00908.x.CrossRefGoogle Scholar
  3. ANAM. (2003). Informe Final de Resultados de la Cobertura Boscosa y Uso del Suelo de la Republica de Panama: 1992–2000. Proyecto ‘Fortalecimiento Institucional del Sistema de Información Geográfica de la ANAM para la Evaluación y Monitoreo de los Recursos Forestales de Panamá con Miras a su Manejo Sostenible’ Panama City, Panama: Autoridad Nacional del Ambiente.Google Scholar
  4. ANATI. (2000). Autoridad Nacional de Administración de Tierras.Google Scholar
  5. Anderson-Teixeira, K. J., Davies, S. J., Bennett, A. C., Gonzalez-Akre, E. B., Muller-Landau, H. C., Joseph Wright, S., et al. (2015). CTFS-Forest GEO: A Worldwide Network Monitoring Forests in an Era of Global Change. Global Change Biology, 21(2), 528–549.  https://doi.org/10.1111/gcb.12712.CrossRefGoogle Scholar
  6. Asner, G. P., Knapp, D. E., Boardman, J., Green, R. O., Kennedy-Bowdoin, T., Eastwood, M., et al. (2012). Carnegie Airborne Observatory-2: Increasing Science Data Dimensionality via High-Fidelity Multi-Sensor Fusion. Remote Sensing of Environment, 124, 454–465.CrossRefGoogle Scholar
  7. Asner, G. P., Mascaro, J., Anderson, C., Knapp, D. E., Martin, R. E., Kennedy-Bowdoin, T., et al. (2013). High-fidelity National Carbon Mapping for Resource Management and REDD+. Carbon Balance and Management, 8(7). http://www.biomedcentral.com/content/pdf/1750-0680-8-7.pdf.
  8. Barbier, E. B., Burgess, J. C., & Grainger, A. (2010). The Forest Transition: Towards a More Comprehensive Theoretical Framework. Land Use Policy, 27(2), 98–107.CrossRefGoogle Scholar
  9. Boyle, S. A., Kennedy, C. M., Torres, J., Colman, K., Pérez-Estigarribia, P. E., & de la Sancha, N. U. (2014). High-Resolution Satellite Imagery Is an Important yet Underutilized Resource in Conservation Biology. PLoS ONE, 9(1), e86908.  https://doi.org/10.1371/journal.pone.0086908.CrossRefGoogle Scholar
  10. Busch, C., & Geoghegan, J. (2010). Labor Scarcity as an Underlying Cause of the Increasing Prevalence of Deforestation Due to Cattle Pasture Development in the Southern Yucatán Region. Regional Environmental Change, 10(3), 191–203.  https://doi.org/10.1007/s10113-010-0110-z.CrossRefGoogle Scholar
  11. Catterall, C. P., Kanowski, J., & Wardell-Johnson, G. W. 2009. Biodiversity and New Forests: Interacting Processes, Prospects and Pitfalls of Rainforest Restoration. In N. E. Stork Chair Head Associate Dean CEO Director Member & S. M. Turton Executive Director Associateessor Director Councillor (Eds.), Living in a Dynamic Tropical Forest Landscape (pp. 510–525). Blackwell. http://onlinelibrary.wiley.com/doi/10.1002/9781444300321.ch41/summary.
  12. Caughlin, T. T., Elliott, S., & Lichstein, J. W. (2016). When Does Seed Limitation Matter for Scaling Up Reforestation from Patches to Landscapes? Ecological Applications, 26(8), 2437–2448.  https://doi.org/10.1002/eap.1410.CrossRefGoogle Scholar
  13. Caughlin, T. T., Graves, S. J., Asner, G. P., van Breugel, M., Hall, J. S., Martin, R. E., et al. (2016). A Hyperspectral Image Can Predict Tropical Tree Growth Rates in Single-Species Stands. Ecological Applications, 26(8), 2369–2375.  https://doi.org/10.1002/eap.1436.CrossRefGoogle Scholar
  14. Caughlin, T. T., Rifai, S. W., Graves, S. J., Asner, G. P., & Bohlman, S. A. (2016). Integrating LiDAR-Derived Tree Height and Landsat Satellite Reflectance to Estimate Forest Regrowth in a Tropical Agricultural Landscape. Remote Sensing in Ecology and Conservation, 2(4), 190–203.  https://doi.org/10.1002/rse2.33.CrossRefGoogle Scholar
  15. Chazdon, R. L., Brancalion, P. H. S., Laestadius, L., Bennett-Curry, A., Buckingham, K., Kumar, C., et al. (2016, March). When Is a Forest a Forest? Forest Concepts and Definitions in the Era of Forest and Landscape Restoration. Ambio, 1–13.  https://doi.org/10.1007/s13280-016-0772-y.
  16. Chazdon, R. L., Brancalion, P. H. S., Lamb, D., Laestadius, L., Calmon, M., & Kumar, C. (2015). A Policy-Driven Knowledge Agenda for Global Forest and Landscape Restoration. Conservation Letters, 10(1), 125–132.  https://doi.org/10.1111/conl.12220.CrossRefGoogle Scholar
  17. Chazdon, R. L., Broadbent, E. N., Rozendaal, D. M. A., Bongers, F., Zambrano, A. M. A., Mitchell Aide, T., et al. (2016). Carbon Sequestration Potential of Second-Growth Forest Regeneration in the Latin American Tropics. Science Advances, 2(5), e1501639.  https://doi.org/10.1126/sciadv.1501639.CrossRefGoogle Scholar
  18. Chazdon, R. L., & Grabowski, Z. J. (2012, April). Beyond Carbon: Redefining Forests and People in the Global Ecosystem Services Market. S.A.P.I.EN.S. Surveys and Perspectives Integrating Environment and Society, 5(1). http://sapiens.revues.org/1246.
  19. Clark, M. L., & Mitchell Aide, T. (2011). Virtual Interpretation of Earth Web-Interface Tool (VIEW-IT) for Collecting Land-Use/Land-Cover Reference Data. Remote Sensing, 3(3), 601–620.CrossRefGoogle Scholar
  20. Cramer, V. A., Hobbs, R. J., & Standish, R. J. (2008). What’s New About Old Fields? Land Abandonment and Ecosystem Assembly. Trends in Ecology & Evolution, 23(2), 104–112.Google Scholar
  21. Crk, T., Uriarte, M., Corsi, F., & Flynn, D. (2009). Forest Recovery in a Tropical Landscape: What Is the Relative Importance of Biophysical, Socioeconomic, and Landscape Variables? Landscape Ecology, 24(5), 629–642.CrossRefGoogle Scholar
  22. Culas, R. J. (2012, July). REDD and Forest Transition: Tunneling Through the Environmental Kuznets Curve. Ecological Economics, 79, 44–51.  https://doi.org/10.1016/j.ecolecon.2012.04.015.CrossRefGoogle Scholar
  23. Cumming, G. S., Cumming, D. H. M., & Redman, C. L. (2006). Scale Mismatches in Social-Ecological Systems: Causes, Consequences, and Solutions. Ecology and Society, 11(1). http://www.jstor.org/stable/26267802.
  24. Dudley, N. (2007). Five Years of Implementing Forest Landscape Restoration: Lessons to Date. Forests for Life Program, WWF International.Google Scholar
  25. Duncan, R. S., & Chapman, C. A. (1999). Seed Dispersal and Potential Forest Succession in Abandoned Agriculture in Tropical Africa. Ecological Applications, 9(3), 998–1008.  https://doi.org/10.2307/2641345.
  26. Dutrieux, L. P., Jakovac, C. C., Latifah, S. H., & Kooistra, L. (2016). Reconstructing Land Use History from Landsat Time-Series: Case Study of a Swidden Agriculture System in Brazil. International Journal of Applied Earth Observation and Geoinformation, 47, 112–124.CrossRefGoogle Scholar
  27. Fischer, A., & Vasseur, L. (2002). Smallholder Perceptions of Agroforestry Projects in Panama. Agroforestry Systems, 54(2), 103–113.  https://doi.org/10.1023/A:1015047404867.CrossRefGoogle Scholar
  28. Garen, E. J., Saltonstall, K., Ashton, M. S., Slusser, J. L., Mathias, S., & Hall, J. S. (2011). The Tree Planting and Protecting Culture of Cattle Ranchers and Small-Scale Agriculturalists in Rural Panama: Opportunities for Reforestation and Land Restoration. Forest Ecology and Management, 261(10), 1684–1695.  https://doi.org/10.1016/j.foreco.2010.10.011.CrossRefGoogle Scholar
  29. Garen, E. J., Saltonstall, K., Slusser, J. L., Mathias, S., Ashton, M. S., & Hall, J. S. (2009). An Evaluation of Farmers’ Experiences Planting Native Trees in Rural Panama: Implications for Reforestation with Native Species in Agricultural Landscapes. Agroforestry Systems, 76(1), 219–236.CrossRefGoogle Scholar
  30. Garibaldi, C., Nieto-Ariza, B., Macía, M. J., & Cayuela, L. (2014). Soil and Geographic Distance as Determinants of Floristic Composition in the Azuero Peninsula (Panama). Biotropica, 46(6), 687–695.  https://doi.org/10.1111/btp.12174.CrossRefGoogle Scholar
  31. Gillet, F. 2008. Modelling Vegetation Dynamics in Heterogeneous Pasture-Woodland Landscapes. Ecological Modelling, 217(1–2), 1–18. https://doi.org/10.1016/j.ecolmodel.2008.05.013.
  32. Giri, C., Ochieng, E., Tieszen, L. L., Zhu, Z., Singh, A., Loveland, T., et al. (2011). Status and Distribution of Mangrove Forests of the World Using Earth Observation Satellite Data. Global Ecology and Biogeography, 20(1), 154–159.CrossRefGoogle Scholar
  33. Graves, S. J., Asner, G. P., Martin, R. E., Anderson, C. B., Colgan, M. S., Kalantari, L., et al. (2016). Tree Species Abundance Predictions in a Tropical Agricultural Landscape with a Supervised Classification Model and Imbalanced Data. Remote Sensing, 8(2), 161.CrossRefGoogle Scholar
  34. Graves, S. J., Caughlin, T. T., Asner, G. P., & Bohlman, S. A. (2018). A Tree-Based Approach to Biomass Estimation from Remote Sensing Data in a Tropical Agricultural Landscape. Remote Sensing of Environment, 218, 32–43.  https://doi.org/10.1016/j.rse.2018.09.009.
  35. Graves, S. J., Gearhart, J., Caughlin, T. T., & Bohlman, S. (2018). A Digital Mapping Method for Linking High-Resolution Remote Sensing Images to Individual Tree Crowns (No. e27182v1). PeerJ Inc.  https://doi.org/10.7287/peerj.preprints.27182v1.
  36. Griscom, B. W., Adams, J., Ellis, P. W., Houghton, R. A., Lomax, G., Miteva, D. A., et al. (2017, October). Natural Climate Solutions. Proceedings of the National Academy of Sciences, 201710465.  https://doi.org/10.1073/pnas.1710465114.
  37. Griscom, H. P., Connelly, A. B., Ashton, M. S., Wishnie, M. H., & Deago, J. (2011). The Structure and Composition of a Tropical Dry Forest Landscape After Land Clearance: Azuero Peninsula, Panama. Journal of Sustainable Forestry, 30(8), 756–774.CrossRefGoogle Scholar
  38. Hall, J. S., Ashton, M. S., Garen, E. J., & Jose, S. (2011). The Ecology and Ecosystem Services of Native Trees: Implications for Reforestation and Land Restoration in Mesoamerica. Forest Ecology and Management, 261(10), 1553–1557.CrossRefGoogle Scholar
  39. Hansen, M. C., Krylov, A., Tyukavina, A., Potapov, P. V., Turubanova, S., Zutta, B., et al. (2016). Humid Tropical Forest Disturbance Alerts Using Landsat Data. Environmental Research Letters, 11(3), 034008.  https://doi.org/10.1088/1748-9326/11/3/034008.CrossRefGoogle Scholar
  40. Hansen, M. C., Potapov, P. V., Moore, R., Hancher, M., Turubanova, S. A., Tyukavina, A., et al. (2013). High-Resolution Global Maps of 21st-Century Forest Cover Change. Science, 342(6160), 850–853.CrossRefGoogle Scholar
  41. Harvey, C. A., Komar, O., Chazdon, R., Ferguson, B. G., Finegan, B., Griffith, D. M., et al. (2008). Integrating Agricultural Landscapes with Biodiversity Conservation in the Mesoamerican Hotspot. Conservation Biology, 22(1), 8–15.CrossRefGoogle Scholar
  42. Harvey, C. A., Villanueva, C., Villacís, J., Chacón, M., Muñoz, D., López, M., et al. (2005). Contribution of Live Fences to the Ecological Integrity of Agricultural Landscapes. Agriculture, Ecosystems & Environment, 111(1), 200–230.CrossRefGoogle Scholar
  43. Holl, K. D., & Mitchell Aide, T. (2011). When and Where to Actively Restore Ecosystems? Forest Ecology and Management, 261(10), 1558–1563.CrossRefGoogle Scholar
  44. Hooper, E., Condit, R., & Legendre, P. (2002). Responses of 20 Native Tree Species to Reforestation Strategies for Abandoned Farmland in Panama. Ecological Applications, 12(6), 1626–1641.Google Scholar
  45. Jacobson, A., Dhanota, J., Godfrey, J., Jacobson, H., Rossman, Z., Stanish, A., et al. (2015, October). A Novel Approach to Mapping Land Conversion Using Google Earth with an Application to East Africa. Environmental Modelling and Software, 72, 1–9.  https://doi.org/10.1016/j.envsoft.2015.06.011.CrossRefGoogle Scholar
  46. Jakovac, C. C., Peña-Claros, M., Kuyper, T. W., & Bongers, F. (2015). Loss of Secondary-Forest Resilience by Land-Use Intensification in the Amazon. Journal of Ecology, 103(1), 67–77.  https://doi.org/10.1111/1365-2745.12298.CrossRefGoogle Scholar
  47. Kramer, D. B., Hartter, J., Boag, A. E., Jain, M., Stevens, K., Nicholas, K. A., McConnell, W. J., & Liu, J. (2017). Top 40 Questions in Coupled Human and Natural Systems (CHANS) Research. Ecology and Society, 22(2). http://www.jstor.org/stable/26270127.
  48. Lamb, D., Erskine, P. D., & Parrotta, J. A. (2005). Restoration of Degraded Tropical Forest Landscapes. Science, 310(5754), 1628–1632.  https://doi.org/10.1126/science.1111773.26.CrossRefGoogle Scholar
  49. Lambin, E. F., Geist, H. J., & Lepers, E. (2003). Dynamics of Land-Use and Land-Cover Change in Tropical Regions. Annual Review of Environment and Resources, 28(1), 205–241.CrossRefGoogle Scholar
  50. Lambin, E. F., & Meyfroidt, P. (2010). Land Use Transitions: Socio-Ecological Feedback Versus Socio-Economic Change. Land Use Policy, 27(2), 108–118.CrossRefGoogle Scholar
  51. Lazos-Chavero, E., Zinda, J., Bennett-Curry, A., Balvanera, P., Bloomfield, G., Lindell, C., et al. (2016). Stakeholders and Tropical Reforestation: Challenges, Trade-Offs, and Strategies in Dynamic Environments. Biotropica, 48(6), 900–914.  https://doi.org/10.1111/btp.12391.CrossRefGoogle Scholar
  52. Lerner, A. M., Rudel, T. K., Schneider, L. C., McGroddy, M., Burbano, D. V., & Mena, C. F. (2014). The Spontaneous Emergence of Silvo-Pastoral Landscapes in the Ecuadorian Amazon: Patterns and Processes. Regional Environmental Change, 15(7), 1421–1431.  https://doi.org/10.1007/s10113-014-0699-4.CrossRefGoogle Scholar
  53. Mansourian, S., & Vallauri, D. (2014). Restoring Forest Landscapes: Important Lessons Learnt. Environmental Management, 53(2), 241–251.Google Scholar
  54. Marin-Spiotta, E., Silver, W. L., & Ostertag, R. (2007). Long-Term Patterns in Tropical Reforestation: Plant Community Composition and Aboveground Biomass Accumulation. Ecological Applications, 17(3), 828–839.CrossRefGoogle Scholar
  55. Marliana, S. N., & Rühe, F. (2014, September). Post-reforestation Vegetation Development on Abandoned Highland Fields in Java, Indonesia. Forest Ecology and Management, 328, 245–253.  https://doi.org/10.1016/j.foreco.2014.05.042.CrossRefGoogle Scholar
  56. Marvin, D. C., Asner, G. P., Knapp, D. E., Anderson, C. B., Martin, R. E., Sinca, F., et al. (2014). Amazonian Landscapes and the Bias in Field Studies of Forest Structure and Biomass. Proceedings of the National Academy of Sciences, 111(48), E5224–E5232.  https://doi.org/10.1073/pnas.1412999111.CrossRefGoogle Scholar
  57. Mather, A. S. (2007). Recent Asian Forest Transitions in Relation to Forest-Transition Theory. International Forestry Review, 9(1), 491–502.  https://doi.org/10.1505/ifor.9.1.491.CrossRefGoogle Scholar
  58. Mather, A. S., & Needle, C. L. (1998). The Forest Transition: A Theoretical Basis. Area, 30(2), 117–124.CrossRefGoogle Scholar
  59. Metzel, R., & Montagnini, F. (2014). From Farm to Forest: Factors Associated with Protecting and Planting Trees in a Panamanian Agricultural Landscape. BOIS ET FORÊTS DES TROPIQUES, 324, 4.Google Scholar
  60. Metzel, R. N. B., & Pacala, S. (2010). From ‘Finca’ to Forest: Forest Cover Change and Land Management in Los Santos, Panama. http://azueroearthproject.org/aep/wp-content/themes/green-love/reference_pdfs/FINALthesissmall.pdf.
  61. Meyfroidt, P., & Lambin, E. F. (2008). The Causes of the Reforestation in Vietnam. Land Use Policy, 25(2), 182–197.CrossRefGoogle Scholar
  62. Moreno, S. H. (2009). De selvas a potreros: la colonización santeña en Panamá, 1850–1980. Exedra Books.Google Scholar
  63. Murgueitio, E., Calle, Z., Uribe, F., Calle, A., & Solorio, B. (2011). Native Trees and Shrubs for the Productive Rehabilitation of Tropical Cattle Ranching Lands. Forest Ecology and Management, The Ecology and Ecosystem Services of Native Trees: Implications for Reforestation and Land Restoration in Mesoamerica, 261(10): 1654–1663.Google Scholar
  64. Nagendra, H., & Southworth, J. (2009). Reforesting Landscapes: Linking Pattern and Process. New York: Springer. Google Scholar
  65. Pelletier, J., Ramankutty, N., & Potvin, C. (2011). Diagnosing the Uncertainty and Detectability of Emission Reductions for REDD+ Under Current Capabilities: An Example for Panama. Environmental Research Letters, 6(2), 024005.CrossRefGoogle Scholar
  66. Peña-Domene, M., Howe, H. F., Cruz-León, E., Jiménez-Rolland, R., Lozano-Huerta, C., & Martínez-Garza, C. (2017). Seed to Seedling Transitions in Successional Habitats Across a Tropical Landscape. Oikos, 126(3), 410–419. Google Scholar
  67. Perz, S. G. (2007). Grand Theory and Context-Specificity in the Study of Forest Dynamics: Forest Transition Theory and Other Directions. The Professional Geographer, 59(1), 105–114.CrossRefGoogle Scholar
  68. Perz, S. G. (2016). Crossing Boundaries for Collaboration Conservation and Development Projects in the Amazon. Maryland, USA: Lexington Books.Google Scholar
  69. Perz, S. G., & Walker, R. T. (2002). Household Life Cycles and Secondary Forest Cover Among Small Farm Colonists in the Amazon. World Development, 30(6), 1009–1027.  https://doi.org/10.1016/S0305-750X(02)00024-4.
  70. Peters-Guarin, G., & McCall, M. K. (2011). Participatory Mapping and Monitoring of Forest Carbon Services Using Freeware: Cybertracker and Google Earth (pp. 94–104). London: Earthscan. Google Scholar
  71. Rudel, T. K. (2012). The Human Ecology of Regrowth in the Tropics. Journal of Sustainable Forestry, 31(4–5), 340–354.CrossRefGoogle Scholar
  72. Rudel, T. K., Coomes, O. T., Moran, E., Achard, F., Angelsen, A., Xu, J., et al. (2005). Forest Transitions: Towards a Global Understanding of Land Use Change. Global Environmental Change, 15(1), 23–31.CrossRefGoogle Scholar
  73. Satake, A., & Rudel, T. K. (2007). Modeling the Forest Transition: Forest Scarcity and Ecosystem Service Hypotheses. Ecological Applications, 17(7), 2024–2036.  https://doi.org/10.1890/07-0283.1.CrossRefGoogle Scholar
  74. Schröter, M., Härdtle, W., & von Oheimb, G. (2012). Crown Plasticity and Neighborhood Interactions of European Beech (Fagus sylvatica L.) in an Old-Growth Forest. European Journal of Forest Research, 131(3), 787–798.  https://doi.org/10.1007/s10342-011-0552-y.CrossRefGoogle Scholar
  75. Schwartz, N. B., Uriarte, M., DeFries, R., Gutierrez-Velez, V. H., & Pinedo-Vasquez, M. A. (2017). Land-Use Dynamics Influence Estimates of Carbon Sequestration Potential in Tropical Second-Growth Forest. Environmental Research Letters, 12(7), 074023.  https://doi.org/10.1088/1748-9326/aa708b.CrossRefGoogle Scholar
  76. Sloan, S. (2008). Reforestation Amidst Deforestation: Simultaneity and Succession. Global Environmental Change, 18(3), 425–441.  https://doi.org/10.1016/j.gloenvcha.2008.04.009.
  77. Sloan, S. (2015, August). The Development-Driven Forest Transition and Its Utility for REDD+. Ecological Economics, 116, 1–11.  https://doi.org/10.1016/j.ecolecon.2015.04.010.CrossRefGoogle Scholar
  78. Sloan, S. (2016). Tropical Forest Gain and Interactions Amongst Agents of Forest Change. Forests, 7(3), 55.CrossRefGoogle Scholar
  79. Stevens, F. R., Gaughan, A. E., Linard, C., & Tatem, A. J. (2015). Disaggregating Census Data for Population Mapping Using Random Forests with Remotely-Sensed and Ancillary Data. PLoS ONE, 10(2), e0107042.  https://doi.org/10.1371/journal.pone.0107042.CrossRefGoogle Scholar
  80. Tarbox, B. C., Fiestas, C., & Caughlin, T. T. (2018). Divergent Rates of Change Between Tree Cover Types in a Tropical Pastoral Region. Landscape Ecology, 33(12), 2153–2167.Google Scholar
  81. Tewksbury, J. J., Levey, D. J., Haddad, N. M., Sargent, S., Orrock, J. L., Weldon, A., et al. (2002). Corridors Affect Plants, Animals, and Their Interactions in Fragmented Landscapes. Proceedings of the National Academy of Sciences, 99(20), 12923–12926.  https://doi.org/10.1073/pnas.202242699.CrossRefGoogle Scholar
  82. Turner, W., Rondinini, C., Pettorelli, N., Mora, B., Leidner, A. K., Szantoi, Z., et al. (2015, February). Free and Open-Access Satellite Data Are Key to Biodiversity Conservation. Biological Conservation, 182, 173–176.  https://doi.org/10.1016/j.biocon.2014.11.048.CrossRefGoogle Scholar
  83. van Breugel, M., Hall, J. S., Craven, D. J., Gregoire, T. G., Park, A., Dent, D. H., et al. (2011). Early Growth and Survival of 49 Tropical Tree Species Across Sites Differing in Soil Fertility and Rainfall in Panama. Forest Ecology and Management, 261(10), 1580–1589.CrossRefGoogle Scholar
  84. Vergara-Asenjo, G., Sharma, D., & Potvin, C. (2015). Engaging Stakeholders: Assessing Accuracy of Participatory Mapping of Land Cover in Panama. Conservation Letters, 8(6), 432–439.  https://doi.org/10.1111/conl.12161.CrossRefGoogle Scholar
  85. Walters, B. B. (2016, February). Migration, Land Use and Forest Change in St. Lucia, West Indies. Land Use Policy, 51, 290–300.  https://doi.org/10.1016/j.landusepol.2015.11.025.CrossRefGoogle Scholar
  86. Wardrop, N. A., Jochem, W. C., Bird, T. J., Chamberlain, H. R., Clarke, D., Kerr, D., et al. (2018). Spatially Disaggregated Population Estimates in the Absence of National Population and Housing Census Data. Proceedings of the National Academy of Sciences, 115(14), 3529–3537.  https://doi.org/10.1073/pnas.1715305115.CrossRefGoogle Scholar
  87. Wright, S. J., & Muller-Landau, H. C. (2006). The Future of Tropical Forest Species 1. Biotropica, 38(3), 287–301.  https://doi.org/10.1111/j.1744-7429.2006.00154.x.
  88. Zahawi, R. A., Reid, J. L., & Holl, K. D. (2014). Hidden Costs of Passive Restoration. Restoration Ecology, 22(3), 284–287.CrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  • T. Trevor Caughlin
    • 1
    Email author
  • Sarah J. Graves
    • 2
  • Gregory P. Asner
    • 3
  • Bryan C. Tarbox
    • 4
  • Stephanie A. Bohlman
    • 5
  1. 1.Boise State UniversityBoiseUSA
  2. 2.University of Wisconsin-MadisonMadisonUSA
  3. 3.Carnegie Institution for ScienceStanfordUSA
  4. 4.Texas State UniversitySan MarcosUSA
  5. 5.University of FloridaGainesvilleUSA

Personalised recommendations