Advertisement

Black–Scholes Option Pricing Model

  • Jürgen Franke
  • Wolfgang Karl Härdle
  • Christian Matthias Hafner
Chapter
Part of the Universitext book series (UTX)

Abstract

Simple, generally accepted economic assumptions are insufficient to develop a rational option pricing theory.

References

  1. Ait-Sahalia, Y., & Duarte, J. (2003). Nonparametric option pricing under shape restrictions. Journal of Econometrics, 116, 9–47.MathSciNetCrossRefGoogle Scholar
  2. Baxter, M., & Rennie, A. (1996). Financial calculus: An introduction to derivative pricing. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  3. Black, F., & Scholes, M. (1973). The pricing of options and corporate liabilities. Journal of Political Economy, 81, 637–654.MathSciNetCrossRefGoogle Scholar
  4. Cox, J. C., & Ross, S. A. (1976). The valuation of options for alternative stochastic processes. Journal of Financial Economics, 3, 145–166.CrossRefGoogle Scholar
  5. Crack, T. F. (2004). Basic Black–Scholes: Option pricing and trading, USA.Google Scholar
  6. Delbaen, F., & Schachermayer, W. (1994). A general version of the fundamental theorem of asset pricing. Mathematische Annalen, 300, 463–520.MathSciNetCrossRefGoogle Scholar
  7. Duffie, D. (1996). Dynamic asset pricing theory, 2 edn. Princeton: Princeton University Press.zbMATHGoogle Scholar
  8. Fengler, M., Härdle, W., & Villa, C. (2003). The dynamics of implied volatility: A common principal component approach, Review of Derivative Research, 6(3), 179–202.CrossRefGoogle Scholar
  9. Härdle, W., & Simar, L. (2012). Applied multivariate statistical analysis, 3 edn. Heidelberg: Springer-Verlag.CrossRefGoogle Scholar
  10. Harrison, M., & Kreps, D. (1979). Martingales and arbitrage in multiperiod securities markets. Journal of Economic Theory, 20, 381–408.MathSciNetCrossRefGoogle Scholar
  11. Harrison, M., & Pliska, S. (1981). Martingales and stochastic integrals in the theory of continuous trading. Stochastic Processes Applications, 11, 215–260.MathSciNetCrossRefGoogle Scholar
  12. Hastings, C. (1955). Approximations for digital computers. Princeton: Princeton University Press.CrossRefGoogle Scholar
  13. Hull, J. C. (2006). Options, futures and other derivatives. Prentice Hall.Google Scholar
  14. Jensen, B., & Nielsen, J. (1996). Pricing by no arbitrage. In D. Cox, D. Hinkley, & O. Barndorff-Nielsen (Eds.), Time series models in econometrics, finance and other fields. London: Chapman and Hall.Google Scholar
  15. Knuth, D. (1997). The art of computer programming. Addison-Wesley.zbMATHGoogle Scholar
  16. Korn, R. (1999). Optimal portfolios: stochastic models for optimal investment and risk management in continuous time. Singapore: World Scientific.zbMATHGoogle Scholar
  17. Korn, R., & Korn, E. (1999). Optionsbewertung und Portfolio-Optimierung. Braunschweig: Vieweg.CrossRefGoogle Scholar
  18. Korn, R., & Korn, E. (2001). Option pricing and portfolio optimisation. Providence: American Math. Soc.CrossRefGoogle Scholar
  19. Merton, R. (1973). Theory of rational option pricing. Bell Journal of Economics and Management Science, 4, 141–183.MathSciNetCrossRefGoogle Scholar
  20. Press, W., Teukolsky, S., & Vetterling, W. (1992). Numerical recipes in Fortran 77: The art of scientific computing. Addison-Wesley.zbMATHGoogle Scholar
  21. Wilmott, P., Howison, S., & Dewynne, J. (1995). The mathematics of financial derivatives: a student introduction. Cambridge: Cambridge University Press.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Jürgen Franke
    • 1
  • Wolfgang Karl Härdle
    • 2
  • Christian Matthias Hafner
    • 3
  1. 1.Department of MathematicsTechnische Universität KaiserslauternKaiserslauternGermany
  2. 2.Ladislaus von Bortkiewicz Chair of StatisticsHumboldt-Universität BerlinBerlinGermany
  3. 3.Louvain Institute of Data Analysis and Modeling in Economics and StatisticsUCLouvainLouvain-la-NeuveBelgium

Personalised recommendations