Advertisement

Financial Econometrics of Cryptocurrencies

  • Jürgen Franke
  • Wolfgang Karl Härdle
  • Christian Matthias Hafner
Chapter
Part of the Universitext book series (UTX)

Abstract

This chapter is based partly on the texts provided by Elendner et al. (2018) Handbook of digital finance and financial inclusion: Cryptocurrency, FinTech, InsurTech, Regulation, ChinaTech, Mobile Security, and Distributed Ledger. 1st Edition and Chen et al. (2017) Handbook of digital finance and financial inclusion: Cryptocurrency, FinTech, InsurTech, Regulation, ChinaTech, Mobile Security, and Distributed Ledger. 1st Edition. As the economy is becoming more and more digital, the role of digital assets in investment decisions will also grow.

References

  1. Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19(6), 716–723.MathSciNetCrossRefGoogle Scholar
  2. BCBS (2014). Fundamental review of the trading book: outstanding issues – consultative document. Technical report, Bank for International Settlements (BIS). Basel Committee on Banking Supervision.Google Scholar
  3. Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics, 31(3), 307–327.MathSciNetCrossRefGoogle Scholar
  4. Box, G. E., Jenkins, G. M., Reinsel, G. C., & Ljung, G. M. (2015). Time series analysis: forecasting and control. John Wiley & Sons.zbMATHGoogle Scholar
  5. Briere, M., Oosterlinck, K., & Szafarz, A. (2013). Virtual currency, tangible return: Portfolio diversification with bitcoins. Journal of Asset Management, 16(6), 365–373.CrossRefGoogle Scholar
  6. Brooks, C. (2014). Introductory econometrics for finance. Cambridge university press.CrossRefGoogle Scholar
  7. Buiter, W. (2014). Gold: A six thousand year-old bubble revisited.Google Scholar
  8. Chen, S., Chen, C. Y.-H., Härdle, W. K., Lee, T., & Ong, B. (2017). Crix index: Analysis of a cryptocurrency index for portfolio investment. In D. Lee Kuo Chen, & R. Deng (Eds.), Handbook of digital finance and financial inclusion: Cryptocurrency, FinTech, InsurTech, Regulation, ChinaTech, Mobile Security, and Distributed Ledger. 1st Edition.Google Scholar
  9. Dickey, D. A., & Fuller, W. A. (1981). Likelihood ratio statistics for autoregressive time series with a unit root. Econometrica: Journal of the Econometric Society, 1057–1072.Google Scholar
  10. Eisl, A., Gasser, S., & Weinmayer, K. (2015). Caveat emptor: Does bitcoin improve portfolio diversification? Working Paper, WU.Google Scholar
  11. Elendner, H., Trimborn, S., Ong, B., & Lee, T. M. (2018). The cross-section of cryptocurrencies as financial assets: Investing in crypto-currencies beyond bitcoin. In D. Lee Kuo Chen, & R. Deng (Eds.), Handbook of digital finance and financial inclusion: Cryptocurrency, FinTech, InsurTech, Regulation, ChinaTech, Mobile Security, and Distributed Ledger. 1st Edition.Google Scholar
  12. Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates of the variance of united kingdom inflation. Econometrica: Journal of the Econometric Society, 987–1007.MathSciNetCrossRefGoogle Scholar
  13. Engle, R. F., & Ng, V. K. (1993). Measuring and testing the impact of news on volatility. The Journal of Finance, 48(5), 1749–1778.CrossRefGoogle Scholar
  14. Glosten, L., Jagannathan, R., & Runkle, D. (1993). On the relationship between the expected value and the volatility of the nominal excess return on stocks. Journal of Finance, 48, 1779–1801.CrossRefGoogle Scholar
  15. Hamilton, J. D. (1994). Time series analysis, Vol. 2. Princeton: Princeton university press.zbMATHGoogle Scholar
  16. Härdle, W., & Trimborn, S. (2015). Crix or evaluating blockchain based currencies. Oberwolfach Report No. 42/2015 “The Mathematics and Statistics of Quantitative Risk”.Google Scholar
  17. Kwiatkowski, D., Phillips, P. C., Schmidt, P., & Shin, Y. (1992). Testing the null hypothesis of stationarity against the alternative of a unit root: How sure are we that economic time series have a unit root? Journal of Econometrics, 54(1), 159–178.CrossRefGoogle Scholar
  18. Lütkepohl, H. (2005). New introduction to multiple time series analysis. Springer Science & Business Media.Google Scholar
  19. Nelson, D. B. (1991). Conditional heteroskedasticity in asset returns: A new approach. Econometrica: Journal of the Econometric Society, 347–370.MathSciNetCrossRefGoogle Scholar
  20. Rachev, S. T., Mittnik, S., Fabozzi, F. J., Focardi, S. M., & Jašić, T. (2007). Financial econometrics: from basics to advanced modeling techniques, Vol. 150. John Wiley & Sons.zbMATHGoogle Scholar
  21. Schwarz, G. et al. (1978). Estimating the dimension of a model. The Annals of Statistics, 6(2), 461–464.MathSciNetCrossRefGoogle Scholar
  22. Trimborn, S., & Härdle, W. K. (2018). CRIX an Index for cryptocurrencies. Journal of Empirical Finance, 49, 107–122.CrossRefGoogle Scholar
  23. Trimborn, S., Li, M., & Härdle, W. (2019). Investing with cryptocurrencies - a liquidity constrained investment approach. Journal of Financial Econometrics (forthcoming)Google Scholar
  24. Yermack, D. (2015). Chapter 2 – Is bitcoin a real currency? An economic appraisal. In D. L. K. Chuen (Ed.), Handbook of digital currency (pp. 31–43). San Diego: Academic Press.CrossRefGoogle Scholar
  25. Zakoian (1994). Threshold heteroskedastic models. Journal of Economic Dynamics and Control, 18, 931–955.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Jürgen Franke
    • 1
  • Wolfgang Karl Härdle
    • 2
  • Christian Matthias Hafner
    • 3
  1. 1.Department of MathematicsTechnische Universität KaiserslauternKaiserslauternGermany
  2. 2.Ladislaus von Bortkiewicz Chair of StatisticsHumboldt-Universität BerlinBerlinGermany
  3. 3.Louvain Institute of Data Analysis and Modeling in Economics and StatisticsUCLouvainLouvain-la-NeuveBelgium

Personalised recommendations