Advertisement

Copulae and Value-at-Risk

  • Jürgen Franke
  • Wolfgang Karl Härdle
  • Christian Matthias Hafner
Chapter
Part of the Universitext book series (UTX)

Abstract

The capital requirement from financial institutions is based on the amount of risk carried in their portfolios.

References

  1. Bouyé, E., Durrleman, V., Nikeghbali, A., Riboulet, G., & Roncalli, T. (2000). Copulas for finance. a reading guide and some applications. Groupe de Recherche Opérationnelle Crédit Lyonnais.Google Scholar
  2. Chen, X., & Fan, Y. (2006a). Estimation and model selection of semiparametric copula-based multivariate dynamic models under copula misspecification. Journal of Econometrics, 135, 125–154.MathSciNetCrossRefGoogle Scholar
  3. Chen, X., & Fan, Y. (2006b). Estimation of copula-based semiparametric time series models. Journal of Econometrics, 130, 307–335.MathSciNetCrossRefGoogle Scholar
  4. Chen, X., Fan, Y., & Tsyrennikov, V. (2004). Efficient estimation of semiparametric multivariate copula models. working paper.Google Scholar
  5. Clayton, D. G. (1978). A model for association in bivariate life tables and its application in epidemiological studies of familial tendency in chronic disease incidence. Biometrika, 65, 141–151.MathSciNetCrossRefGoogle Scholar
  6. Deutsch, H., & Eller, R. (1999). Derivatives and internal models. Macmillan Press.CrossRefGoogle Scholar
  7. Devroye, L. (1986). Non-uniform random variate generation. New York: Springer-Verlag.CrossRefGoogle Scholar
  8. Embrechts, P., Frey, R., & McNeil, A. (2005). Quantitative risk management: concepts, techniques and tools. Princeton: Princeton University Press.zbMATHGoogle Scholar
  9. Embrechts, P., McNeil, A., & Straumann, D. (1999b). Correlation: Pitfalls and alternatives. RISK, May, 69–71.Google Scholar
  10. Frank, M. J. (1979). On the simultaneous associativity of f(x, y) and x + y − f(x, y). Aequationes Mathematicae, 19, 194–226.MathSciNetCrossRefGoogle Scholar
  11. Genest, C., & Rivest, L.-P. (1989). A characterization of Gumbel family of extreme value distributions. Statistics and Probability Letters, 8, 207–211.MathSciNetCrossRefGoogle Scholar
  12. Giacomini, E., & Härdle, W. (2005). Value-at-risk calculations with time varying copulae. In Proceedings 55th International Statistical Institute, Sydney 2005.Google Scholar
  13. Gumbel, E. J. (1960). Distributions des valeurs extrêmes en plusieurs dimensions. Publ. Inst. Statist. Univ. Paris, 9, 171–173.MathSciNetzbMATHGoogle Scholar
  14. Hoeffding, W. (1940). Masstabinvariante Korrelationstheorie. Schriften des Mathematischen Instituts und des Instituts für Angewandte Mathematik der Universität Berlin, 5(3), 179–233.Google Scholar
  15. Hoeffding, W. (1941). Masstabinvariante Korrelationsmasse für diskontinuierliche Verteilungen. Archiv für die mathematische Wirtschafts- und Sozialforschung, 7, 49–70.Google Scholar
  16. Joe, H. (1996). Families of m-variate distributions with given margins and m(m − 1)∕2 bivariate dependence parameters. In L. Rüschendorf, B. Schweizer, & M. Taylor (Eds.), Distribution with fixed marginals and related topics. IMS Lecture Notes – Monograph Series. Institute of Mathematical Statistics.Google Scholar
  17. Joe, H. (1997). Multivariate models and dependence concepts. London: Chapman and Hall.CrossRefGoogle Scholar
  18. Joe, H., & Xu, J. J. (1996). The estimation method of inference functions for margins for multivariate models. Technical Report 166, Department of Statistics, University of British Columbia.Google Scholar
  19. Morillas, P. M. (2005). A method to obtain new copulas from a given one. Metrika, 61, 169–184.MathSciNetCrossRefGoogle Scholar
  20. Nelsen, R. B. (2006). An introduction to copulas. New York: Springer-Verlag.zbMATHGoogle Scholar
  21. Okhrin, O., Okhrin, Y., & Schmid, W. (2013a). On the structure and estimation of hierarchical Archimedean copulas. J.Econometrics, 173(2), 21–53.MathSciNetCrossRefGoogle Scholar
  22. Okhrin, O., Okhrin, Y., & Schmid, W. (2013b). Properties of the hierarchical Archimedean copulas. Statistics and Risk Modeling, 30(1), 189–204.MathSciNetCrossRefGoogle Scholar
  23. Savu, C., & Trede, M. (2010). Hierarchies of archimedean copulas. Quantitative Finance, 10, 295–304.MathSciNetCrossRefGoogle Scholar
  24. Sklar, A. (1959). Fonctions de répartition à n dimensions et leurs marges. Publ. Inst. Statist. Univ. Paris, 8, 229–231.MathSciNetzbMATHGoogle Scholar
  25. Whelan, N. (2004). Sampling from Archimedean copulas. Quantitative Finance, 4, 339–352.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Jürgen Franke
    • 1
  • Wolfgang Karl Härdle
    • 2
  • Christian Matthias Hafner
    • 3
  1. 1.Department of MathematicsTechnische Universität KaiserslauternKaiserslauternGermany
  2. 2.Ladislaus von Bortkiewicz Chair of StatisticsHumboldt-Universität BerlinBerlinGermany
  3. 3.Louvain Institute of Data Analysis and Modeling in Economics and StatisticsUCLouvainLouvain-la-NeuveBelgium

Personalised recommendations