Advertisement

Value at Risk and Backtesting

  • Jürgen Franke
  • Wolfgang Karl Härdle
  • Christian Matthias Hafner
Chapter
Part of the Universitext book series (UTX)

Abstract

The Value-at-Risk (VaR) is probably the most known measure for quantifying and controlling the risk of a portfolio. The establishment of VaR is of central importance to a credit institute, since it is the basis for a regulatory notification technique and for required equity investments.

References

  1. Artzner, P., Delbaen, F., Eber, J.-M., & Heath, D. (1997). Thinking coherently. Risk, 10, 68–71.Google Scholar
  2. Embrechts, P., Klüppelberg, C., & Mikosch, T. (1997). Modelling extremal events. Berlin: Springer-Verlag.CrossRefGoogle Scholar
  3. Franke, J., Härdle, W., & Stahl, G. (Eds.) (2000). Measuring risk in complex stochastic systems, Vol. 147 of Lecture notes in statistics. New York: Springer-Verlag.Google Scholar
  4. Graumert, U., & Stahl, G. (2001). Interne Modelle. Handwörterbuch des Bank- und Finanzwesens. Stuttgart: Schäffer-Poeschel Verlag.Google Scholar
  5. Jaschke, S., & Küchler, U. (1999). Coherent risk measures. Discussion paper, No. 64, SFB 373. Berlin: Humboldt-Universität zu.Google Scholar
  6. Jorion, P. (2000). Value at risk: The new benchmark for managing financial risk. New York: McGraw-Hill.Google Scholar
  7. Leadbetter, M., Lindgren, G., & Rootzen, H. (1983). Extremes and related properties of random sequences and processes. Springer Series in Statistics. New York-Heidelberg-Berlin: Springer-Verlag.Google Scholar
  8. Lehrbass, F. (2000). A simple approach to country risk. In J. Franke, W. Härdle, & G. Stahl (Eds.), Measuring risk in complex stochastic systems (pp. 33–65). Springer-Verlag.Google Scholar
  9. McAllister, P. H., & Mingo, J. J. (1996). Bank capital requirements for securitized loan portfolios. Journal of Banking and Finance, 20.Google Scholar
  10. Overbeck, L. (2000). Allocation of economic capital in loan portfolios. In J. Franke, W. Härdle, & G. Stahl (Eds.), Measuring risk in complex stochastic systems (pp. 1–15). Springer-Verlag.Google Scholar
  11. RiskMetrics (1996). Technical document, 4th edn.Google Scholar
  12. Taleb, N. (2001). Fooled by randomness: The hidden role of chance in the markets and in life. New York: TEXERE LLC.Google Scholar
  13. Taylor, S. J. (1986). Modelling financial time series. Chichester: Wiley.zbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Jürgen Franke
    • 1
  • Wolfgang Karl Härdle
    • 2
  • Christian Matthias Hafner
    • 3
  1. 1.Department of MathematicsTechnische Universität KaiserslauternKaiserslauternGermany
  2. 2.Ladislaus von Bortkiewicz Chair of StatisticsHumboldt-Universität BerlinBerlinGermany
  3. 3.Louvain Institute of Data Analysis and Modeling in Economics and StatisticsUCLouvainLouvain-la-NeuveBelgium

Personalised recommendations