Advertisement

Intervertebral Disc Segmentation Using Mathematical Morphology—A CNN-Free Approach

  • Edwin CarlinetEmail author
  • Thierry Géraud
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11397)

Abstract

In the context of the challenge of “automatic InterVertebral Disc (IVD) localization and segmentation from 3D multi-modality MR images” that took place at MICCAI 2018, we have proposed a segmentation method based on simple image processing operators. Most of these operators come from the mathematical morphology framework. Driven by some prior knowledge on IVDs (basic information about their shape and the distance between them), and on their contrast in the different modalities, we were able to segment correctly almost every IVD. The most interesting feature of our method is to rely on the morphological structure called the Three of Shapes, which is another way to represent the image contents. This structure arranges all the connected components of an image obtained by thresholding into a tree, where each node represents a particular region. Such structure is actually powerful and versatile for pattern recognition tasks in medical imaging.

Keywords

Mathematical morphology Tree of shapes 

References

  1. 1.
    Ben Ayed, I., Punithakumar, K., Garvin, G., Romano, W., Li, S.: Graph cuts with invariant object-interaction priors: application to intervertebral disc segmentation. In: Székely, G., Hahn, H.K. (eds.) IPMI 2011. LNCS, vol. 6801, pp. 221–232. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-22092-0_19CrossRefGoogle Scholar
  2. 2.
    Cao, F., Lisani, J.L., Morel, J.M., Musé, P., Sur, F.: A Theory of Shape Identification. LNM, vol. 1948. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-68481-7CrossRefzbMATHGoogle Scholar
  3. 3.
    Carlinet, E., Géraud, T.: A comparative review of component tree computation algorithms. IEEE Trans. Image Process. 23(9), 3885–3895 (2014)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Carlinet, E., Géraud, T.: Morphological object picking based on the color tree of shapes. In: Proceedings of the 5th International Conference on Image Processing Theory, Tools and Applications (IPTA), Orléans, France, pp. 125–130, November 2015Google Scholar
  5. 5.
    Carlinet, E., Géraud, T.: MToS: a tree of shapes for multivariate images. IEEE Trans. Image Process. 24(12), 5330–5342 (2015)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Carlinet, E., Géraud, T., Crozet, S.: The tree of shapes turned into a max-tree: a simple and efficient linear algorithm. In: Proceedings of the 24th IEEE International Conference on Image Processing (ICIP), Athens, Greece, pp. 1488–1492, October 2018Google Scholar
  7. 7.
    Caselles, V., Coll, B., Morel, J.M.: Topographic maps and local contrast changes in natural images. Int. J. Comput. Vis. 33(1), 5–27 (1999)CrossRefGoogle Scholar
  8. 8.
    Caselles, V., Monasse, P.: Grain filters. J. Math. Imaging Vis. 17(3), 249–270 (2002)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Caselles, V., Monasse, P.: Geometric Description of Images as Topographic Maps. LNM, vol. 1984. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-04611-7CrossRefzbMATHGoogle Scholar
  10. 10.
    Chen, C., et al.: Localization and segmentation of 3D intervertebral discs in MR images by data driven estimation. IEEE Trans. Med. Imaging 34(8), 1719–1729 (2015)CrossRefGoogle Scholar
  11. 11.
    Crozet, S., Géraud, T.: A first parallel algorithm to compute the morphological tree of shapes of \(n\)D images. In: Proceedings of the 21st IEEE International Conference on Image Processing (ICIP), Paris, France, pp. 2933–2937 (2014)Google Scholar
  12. 12.
    Géraud, T., Carlinet, E., Crozet, S., Najman, L.: A quasi-linear algorithm to compute the tree of shapes of nD images. In: Hendriks, C.L.L., Borgefors, G., Strand, R. (eds.) ISMM 2013. LNCS, vol. 7883, pp. 98–110. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-38294-9_9CrossRefzbMATHGoogle Scholar
  13. 13.
    Monasse, P., Guichard, F.: Fast computation of a contrast-invariant image representation. IEEE Trans. Image Process. 9(5), 860–872 (2000)CrossRefGoogle Scholar
  14. 14.
    Neubert, A., Fripp, J., Engstrom, C., Walker, D., Weber, M.: Three-dimensional morphological and signal intensity features for detection of intervertebral disc degeneration from magnetic resonance images. J. Am. Med. Inform. Assoc. 20(6), 1082–1090 (2013)CrossRefGoogle Scholar
  15. 15.
    Stern, D., Likar, B., Pernus, F., Vrtovec, T.: Automated detection of spinal centrelines, vertebral bodies and intervertebral discs in CT and MR images of lumbar spine. Phys. Med. Biol. 55(1), 247–264 (2010)CrossRefGoogle Scholar
  16. 16.
    Xu, Y., Carlinet, E., Géraud, T., Najman, L.: Hierarchical segmentation using tree-based shape spaces. IEEE Trans. Pattern Anal. Mach. Intell. 39(3), 457–469 (2017)CrossRefGoogle Scholar
  17. 17.
    Xu, Y., Géraud, T., Najman, L.: Connected filtering on tree-based shape-spaces. IEEE Trans. Pattern Anal. Mach. Intell. 38(6), 1126–1140 (2016)CrossRefGoogle Scholar
  18. 18.
    Xu, Y., Géraud, T., Najman, L.: Hierarchical image simplification and segmentation based on Mumford-Shah-salient level line selection. Pattern Recogn. Lett. 83(3), 278–286 (2016)CrossRefGoogle Scholar
  19. 19.
    Xu, Y., Monasse, P., Géraud, T., Najman, L.: Tree-based morse regions: a topological approach to local feature detection. IEEE Trans. Image Process. 23(12), 5612–5625 (2014)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.EPITA Research and Development Laboratory (LRDE)Le Kremlin-BicêtreFrance

Personalised recommendations