Advertisement

Ionic Polymer-Metal Composite Membranes Methods of Preparation

  • Fatma Aydin Unal
  • Hakan Burhan
  • Fatima Elmusa
  • Shukri Hersi
  • Fatih SenEmail author
Chapter
Part of the Engineering Materials book series (ENG.MAT.)

Abstract

The ionic polymer-metal composite membranes are generally perfluorinated membranes such as Nafion and Flemion. These composites are mostly electroactive materials and they can be used as activators and sensors. The electrochemical-mechanical properties of ionic polymer-metal composites depend on many factors, such as the nature of the solvent, the morphology of the electrodes, and also other factors. This chapter provides general information about the preparation methods of the ionic polymer-metal composite membranes.

Keywords

Membrane Method Ionic polymer Metal composites 

References

  1. 1.
    Hwang, T., Palmer, V., Nam, J., Lee, D.C., Kim, K.J.: A new ionic polymer—a metal composite based on Nafion/poly(vinyl alcohol-co-ethylene) blends. Smart Mater. Struct. 24, 105011 (2015)CrossRefGoogle Scholar
  2. 2.
    Shahinpoor, M., Cohen, Y.B., Xue, T., Simpson, J.O., Smith, J.: Ionic polymer-metal composites (IPMC) as biomimetic sensors and actuators-artificial muscles. In: Proceedings of SPIE’s 5th Annual International Symposium on Smart Structures and Materials, 1998, San Diego, CA, pp. 3324–3327 (1998)Google Scholar
  3. 3.
    Chen, Z., Um, T., Bart-Smith, H.: Ionic polymer-metal composite artificial muscles in bio-inspired engineering research: underwater propulsion. In: Berselli, G. (ed.) Smart Actuation and Sensing Systems—Recent Advances and Future Challenges, pp. 223–248 (2012)Google Scholar
  4. 4.
    Chen, Z., Um, T.I., Bart-Smith, H.: A novel fabrication of ionic polymer–metal composite membrane actuator capable of 3-dimensional kinematic motions. Sens. Actuators A 168, 131–139 (2011)CrossRefGoogle Scholar
  5. 5.
    Kazem, B., Khawwaf, J.: Estimation bending deflection in an ionic polymer metal composite (IPMC) material using an artificial neural network model. Jordan J. Mech. Ind. Eng. 10, 123–131 (2016)Google Scholar
  6. 6.
    Bhat, N.D.: Modeling and precision control of ionic polymer metal composite. Masters Thesis, Texas A&M University (2003)Google Scholar
  7. 7.
    Palmer, M.V., Pugal, D., Kim, K.J., Leang, K.K., Asaka, K., Aabloo, A.: Nanothorn electrodes for ionic polymer-metal composite artificial muscles. Sci. Rep. 4, 6176 (2014)CrossRefGoogle Scholar
  8. 8.
    Zamani, S., Nemat-Nasser, S.: Controlled actuation of Nafion-based ionic polymer-metal composites (IPMCs) with ethylene glycol as a solvent, Proc. SPIE; Smart Struct. Mater. 159–163 (2004)Google Scholar
  9. 9.
    Vinh, N.D., Kim, H.M.: Ocean-based electricity generating system utilizing the electrochemical conversion of wave energy by ionic polymer-metal composites. Electrochem. Commun. 75, 64–68 (2017)CrossRefGoogle Scholar
  10. 10.
    Shahinpoor, M., Kim, K.J.: Ionic polymer-metal composites: IV. Industrial and medical applications. Smart Mater. Struct. 1, 197–214 (2005)Google Scholar
  11. 11.
    Chunga, C.K., Funga, P.K., Honga, Y.Z., Ju, M.S., Lin, C.C.K., Wu, T.C.: A novel fabrication of ionic polymer-metal composites (IPMC) actuator with silver nano-powders. Sens. Actuators B 117, 367–375 (2006)CrossRefGoogle Scholar
  12. 12.
    Yu, M., Shen, H., Dai, Z.D.: Manufacture and performance of ionic polymer-metal composites. J. Bionic Eng. 4, 143–149 (2007)CrossRefGoogle Scholar
  13. 13.
    Pasquale, G.D., Graziani, S., Gugliuzzo, C., Pollicino, A.: Ionic polymer-metal composites (IPMCs) and ionic polymer-polymer composites (IP2Cs): effects of electrode on mechanical, thermal and electromechanical behavior. AIMS Mater. Sci. 4, 1062–1077 (2017)CrossRefGoogle Scholar
  14. 14.
    Bhandari, B., Lee, G.Y., Ahn, S.H.: A review on IPMC material as actuators and sensors: fabrications, characteristics, and applications. Int. J. Precis. Eng. Manuf. 13, 141–163 (2012)CrossRefGoogle Scholar
  15. 15.
    Aabloo, A., Luca, V.D., Pasquale, G.D., Graziani, S., Gugliuzzo, C., Johanson, U., Marino, C., Pollicino, A., Puglisi, R.: A new class of ionic electroactive polymers based on green synthesis. Sens. Actuator A Phys. 249, 32–44 (2016)CrossRefGoogle Scholar
  16. 16.
    Wang, Y., Chen, H., Wang, Y.: Casting membranes for ionic polymer-metal composite actuators. Soc. Plast. Eng. (SPE) (2013)Google Scholar
  17. 17.
    Nam, J.: Ionic polymer-metal composite actuators based on Nafion blends with functional polymers, University of Nevada (2016)Google Scholar
  18. 18.
    Hasani-Sadrabadi, M.M., Ghaffarian, S.R., Majedi, F.S.: Preparation and characterization of novel ionic polymers to be used as artificial muscles. Homayoun Moaddelda Iran. J. Pharm. Sci. Summer 4, 217–224 (2008)Google Scholar
  19. 19.
    Tiwari, R.: Ionic polymer-metal composite mechanoelectric transduction: effect of impedance. Int. J. Smart Nano Mater. 3, 275–295 (2012)CrossRefGoogle Scholar
  20. 20.
    Wang, J., Kimura, M., Taya, M.: The bio-inspired design of tactile sensors based on ionic polymer metal composites. Proc. ICCM B 4, 1–11 (2009)Google Scholar
  21. 21.
    Sen, B., Demirkan, B., Savk, A., Karahan Gülbay, S., Sen, F.: Trimetallic PdRuNi nanocomposites decorated on graphene oxide: a preferred catalyst for the hydrogen evolution reaction. Int. J. Hydrogen Energy 43, 17984–17992 (2018)Google Scholar
  22. 22.
    Eris, S., Daşdelen, Z., Yıldız, Y., Sen, F.: Nanostructured Polyaniline-rGO decorated platinum catalyst with enhanced activity and durability for Methanol oxidation. Int. J. Hydrogen Energy 43(3), 1337–1343 (2018)Google Scholar
  23. 23.
    Eris, S., Daşdelen, Z., Sen, F.: Enhanced electrocatalytic activity and stability of monodisperse Pt nanocomposites for direct methanol fuel cells. J. Colloid Interface Sci. 513, 767–773 (2018)Google Scholar
  24. 24.
    Şahin, B., Aygün, A., Gündüz, H., Şahin, K., Demir, E., Akocak, S., Şen, F.: Cytotoxic effects of platinum nanoparticles obtained from pomegranate extract by the green synthesis method on the MCF-7 cell line. Coll. Surf. B Biointerfaces 163, 119–124 (2018)Google Scholar
  25. 25.
    Şen, B., Akdere, E.H., Şavk, A., Gültekin, E., Göksu, H., Şen, F.: A novel thiocarbamide functionalized graphene oxide supported bimetallic monodisperse Rh-Pt nanoparticles (RhPt/TC@GO NPs) for Knoevenagel condensation of aryl aldehydes together with malononitrile. Appl. Catal. B Environ. 225(5), 148–153 (2018)Google Scholar
  26. 26.
    Eris, S., Daşdelen, Z., Sen, F.: Investigation of electrocatalytic activity and stability of Pt@f-VC catalyst prepared by in-situ synthesis for Methanol electrooxidation. Int. J. Hydrogen Energy 43(1), 385–390 (2018)Google Scholar
  27. 27.
    Gulçin, I., Taslimi, P., Aygün, A., Sadeghian, N., Bastem, E., Kufrevioglu, O.I., Turkan, F., Şen, F.: Antidiabetic and antiparasitic potentials: inhibition effects of some natural antioxidant compounds on α‑glycosidase, α‑amylase and human glutathione S‑transferase enzymes. Int. J. Biol. Macromol. 119, 741–746 (2018)Google Scholar
  28. 28.
    Sen, B., Demirkan, B., Levent, M., Savk, A., Sen, F.: Silica-based monodisperse PdCo nanohybrids as highly efficient and stable nanocatalyst for hydrogen evolution reaction. Int. J. Hydrogen Energy.  https://doi.org/10.1016/j.ijhydene.2018.07.080
  29. 29.
    Koskun, Y., Şavk, A., Şen, B., Şen, F.: Highly sensitive glucose sensor based on monodisperse palladium nickel/activated carbon nanocomposites. Anal. Chim. Acta 1010, 37–43 (2018)Google Scholar
  30. 30.
    Şen, B., Aygün, A., Şavk, A., Akocak, S., Şen, F.: Bimetallic palladium-iridium alloy nanoparticles as highly efficient and stable catalyst for the hydrogen evolution reaction. Int. J. Hydrogen Energy.  https://doi.org/10.1016/j.ijhydene.2018.07.081
  31. 31.
    Sen, B., Savk, A., Sen, F.: Highly efficient monodisperse nanoparticles confined in the carbon black hybrid material for hydrogen liberation. J. Colloid Interface Sci. 520, 112–118 (2018)Google Scholar
  32. 32.
    Sen, B., Kuyuldar, E., Demirkan, B., Onal-Okyay, T., Savk, A., Sen, F.: Highly efficient polymer supported monodisperse ruthenium-nickel nanocomposites for dehydrocoupling of dimethylamine borane. J. Colloid Interface Sci. 526, 480–486 (2018)Google Scholar
  33. 33.
    Günbatar, S., Aygun, A., Karataş, Y., Gülcan, M., Şen, F.: Carbon-nanotube-based rhodium nanoparticles as highly-active catalyst for hydrolytic dehydrogenation of dimethylamineborane at room temperature. J. Coll. Interface Sci. 530, 321–327Google Scholar
  34. 34.
    Park, K., Yoon, M., Lee, S., Choi, J., Thubrikar, M.: Effects of electrode degradation and solvent evaporation on the performance of ionic-polymer–metal composite sensors. Smart Mater. Struct. 19, 075002 (2010)CrossRefGoogle Scholar
  35. 35.
    Park, K.: Characterization of the solvent evaporation effect on ionic polymer-metal composite sensors. J. Korean Phys. Soc. 59, 3401–3409 (2011)CrossRefGoogle Scholar
  36. 36.
    Min, Y., Qing Song, H., Yan, D., Dong Jie, G., Jia Bo, L., Zhen Dong, D.: Force optimization of ionic polymer-metal composite actuators by an orthogonal array method. Mech. Eng. 56, 2061–2070 (2011)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Fatma Aydin Unal
    • 1
    • 2
  • Hakan Burhan
    • 2
  • Fatima Elmusa
    • 2
  • Shukri Hersi
    • 2
  • Fatih Sen
    • 2
    Email author
  1. 1.Faculty of Engineering, Metallurgical and Materials Engineering DepartmentAlanya Alaaddin Keykubat UniversityAlanya, AntalyaTurkey
  2. 2.Sen Research Group, Faculty of Art and Science, Department of BiochemistryDumlupinar UniversityKutahyaTurkey

Personalised recommendations