Role of Metal Ion Implantation on Ionic Polymer Metal Composite Membranes

  • Adina Maria Dobos
  • A. FilimonEmail author
Part of the Engineering Materials book series (ENG.MAT.)


Due to the increasing need from the modern technologies and industrial applications, the diversity of electroactive materials, i.e. conductors, semiconductors, dielectrics with characteristics gradual evolution, imposes the development of a new generation of materials. Based on the new materials, horizons have opened towards the design of the new electronics generation with significant impact on the future technological systems. This chapter aims to investigate various types of polymeric ionic membranes used for high-performance ionic polymer–metal composites actuators, which exhibit a good deformation stability, and efficiency. Along with the material study, the role of metal ion implantation on ionic polymer metal composite membranes is also analyzed in order to overcome some disadvantages of the ionic polymer actuators and also to improve their stability, sustainability, and performance. Additionally, this chapter takes into account of the latest actuation models and control for designing of the engineering materials based on ionic polymer metal composites (IPMCs) and their use for integrated systems in soft sensors and actuators, as well as biomedical devices for friendly human applications.

List of Abbreviations


Atomic force microscopy


Carbon nanotube


Direct current


Electroactive polymers


Electronic electroactive polymers


Ionic electroactive polymers


Filtered cathode vacuum arc


Ionic polymer-metal composites




Potassium hydroxide








Sodium boron hydride


Optical coherence tomography





\( {{\text{Pt}}\left( {{\text{NH}}_{ 3} } \right)_{ 4}}^{ 2+ } \)

Tetraammineplatinum complex


Transmission electron microscopy




  1. 1.
    Addington, M., Schodek, D.L. (eds.): Smart Materials and Technologies in Architecture. Architectural Press, Oxford (2004)Google Scholar
  2. 2.
    Pelrine, R., Kornbluh, R., Pei, Q., Joseph, J.: High-speed electrically actuated elastomers with strain greater than 100%. Science 287, 836–839 (2000)Google Scholar
  3. 3.
    Ashley, S.: Artificial muscles. Sci. Am. 289, 52–59 (2003)Google Scholar
  4. 4.
    Sadeghipour, K., Salomon, R., Neogi, S.: Development of a novel electrochemically active membrane and “smart” material based vibration sensor/damper. Smart Mater. Struct. 1, 172–179 (1992)Google Scholar
  5. 5.
    Oguro, K., Asaka, K., Takenaka, H.: Actuator element. US Patent 5,268,082, 26 Feb 1992 (1993)Google Scholar
  6. 6.
    Asaka, K., Oguro, K., Nishimura, Y., Mizuhata, M., Takenaka, H.: Bending of polyelectrolyte membrane-platinum composites by electric stimuli 1. Response characteristics to various waveforms. Polym. J. 27, 436–440 (1995)Google Scholar
  7. 7.
    Asaka, K., Oguro, K.: Bending of polyelectrolyte membrane platinum composites by electric stimuli, part II. Response kinetics. J. Electroanal. Chem. 480, 186–198 (2000)Google Scholar
  8. 8.
    Jung, S.Y., Ko, S.Y., Park, J.O., Park, S.: Enhanced ionic polymer–metal composite actuator with pore size–controlled porous Nafion membrane using silica sol–gel process. J. Intell. Mater. Syst. Struct. 1–10 (2016).
  9. 9.
    Nemat-Nasser, S., Li, J.: Electromechanical response of ionic polymer-metal composite. J. Appl. Phys. 87, 3321–3331 (2000)Google Scholar
  10. 10.
    Tang, Y., Xue, Z., Zhou, X., Xie, X., Tang, C.-Y.: Novel sulfonated polysulfone ion exchange membranes for ionic polymer–metal composite actuators. Sens. Actuators B 202, 1164–1174 (2014)Google Scholar
  11. 11.
    Kim, K.J., Tadokoro, S. (eds.): Electroactive Polymers for Robotics Applications: Artificial Muscles and Sensors. Springer, London (2007)Google Scholar
  12. 12.
    Carpi, F., Smela, E. (eds.): Biomedical Applications of Electroactive Polymer Actuators. John Wiley & Sons, Chichester (2009)Google Scholar
  13. 13.
    Han, M.J., Park, J.H., Lee, J.Y., Jho, J.Y.: Ionic polymer–metal composite actuators employing radiation-grafted fluoro polymers as ion-exchange membranes. Macromol. Rapid Commun. 27, 219–222 (2006)Google Scholar
  14. 14.
    Kim, O., Shin, T.J., Park, M.J.: Fast low–voltage electroactive actuators using nanostructured polymer electrolytes. Nat. Commun. 4, 2208 (2013)Google Scholar
  15. 15.
    Gao, R., Wang, D., Heflin, J.R., Long, T.E.: Imidazolium sulfonate-containing pentablock copolymer-ionic liquid membranes for electroactive actuators. J. Mater. Chem. 22, 13473–13476 (2012)Google Scholar
  16. 16.
    Imaizumi, S., Kokubo, H., Watanabe, M.: Polymer actuators using ion-gel electrolytes prepared by self-assembly of ABA-triblock copolymers. Macromolecules 45, 401–409 (2012)Google Scholar
  17. 17.
    Kim, O., Kim, H., Choi, U.H., Park, M.J.: One-volt-driven superfast polymer actuators based on single-ion conductors. Nat. Commun. 7, 13576 (2016)Google Scholar
  18. 18.
    Wu, G., Hu, Y., Liu, Y., Zhao, J., Chen, X., Whoehling, V., Plesse, C., Nguyen, G.T.M., Vidal, F., Chenet, W.: Graphitic carbon nitride nanosheet electrode-based high performance ionic actuator. Nat. Commun. 6, 7258 (2015)Google Scholar
  19. 19.
    Lu, L., Liu, J., Hu, Y., Zhang, Y., Randriamahazaka, H., Chen, W.: Highly stable air working bimorph actuator based on a graphene nanosheet/carbon nanotube hybrid electrode. Adv. Mater. 24, 4317–4321 (2012)Google Scholar
  20. 20.
    Armand, M., Endres, F., MacFarlane, D.R., Ohno, H., Scrosati, B.: Ionic-liquid materials for the electrochemical challenges of the future. Nat. Mater. 8, 621–629 (2009)Google Scholar
  21. 21.
    Kim, O., Kim, S.Y., Park, B., Hwang, W., Park, M.J.: Factors affecting electromechanical properties of ionic polymer actuators based on ionic liquid-containing sulfonated block copolymers. Macromolecules 47, 4357–4368 (2014)Google Scholar
  22. 22.
    Jangu, C., Wang, J.H.H., Wang, D., Fahs, G., Heflin, J.R., Moore, R.B., Colby, R.H., Long, T.E.: Imidazole-containing triblock copolymers with a synergy of ether and imidazolium sites. J. Mater. Chem. C 3, 3891–3901 (2015)Google Scholar
  23. 23.
    Margaretta, E., Fahs, G.B., Inglefield Jr., D.L., Jangu, C., Wang, D., Heflin, J.R., Moore, R.B., Long, T.E.: Imidazolium-containing ABA triblock copolymers as electroactive devices. ACS Appl. Mater. Interfaces 8, 1280–1288 (2016)Google Scholar
  24. 24.
    Kim, O., Kim, S.Y., Lee, J., Park, M.J.: Building less tortuous ion-conduction pathways using block copolymer electrolytes with a well-defined cubic symmetry. Chem. Mater. 25, 318–325 (2016)Google Scholar
  25. 25.
    Wu, T., Beyer, F.L., Brown, R.H., Moore, R.B., Long, T.E.: Influence of zwitterions on thermomechanical properties and morphology of acrylic copolymers: implications for electroactive applications. Macromolecules 44, 8056–8063 (2011)Google Scholar
  26. 26.
    Kwon, T., Leea, J.W., Cho, H., Henkensmeierc, D., Kang, Y., Hong, S.M., Koo, C.M.: Ionic polymer actuator based on anion-conducting methylated ether-linked polybenzimidazole. Sens. Actuators B Chem. 214, 43–49 (2015)Google Scholar
  27. 27.
    Liang, S., Chen, Q., Choi, U.H., Bartels, J., Bao, N., Runt, J., Colby, R.H.: Plasticizing Li single-ion conductors with low-volatility siloxane copolymers and oligomers containing ethylene oxide and cyclic carbonates. J. Mater. Chem. A 3, 21269–21276 (2015)Google Scholar
  28. 28.
    Shahinpoor, M., Kim, K.J.: Ionic polymer–metal composites: I. Fundamentals. Smart Mater. Struct. 10, 819–833 (2001)Google Scholar
  29. 29.
    Tamagawa, H., Nogata, F., Popovic, S.: Roles of Ag redox reaction and water absorption inducing the Selemion bending. J. Membr. Sci. 251, 145–150 (2005)Google Scholar
  30. 30.
    Du, F.P., Tang, C.Y., Xie, X.L., Zhou, X.P., Tan, L.: Carbon nanotube enhanced gripping in polymer-based actuators. J. Phys. Chem. C 113, 7223–7226 (2009)Google Scholar
  31. 31.
    Du, F.P., Tang, C.Y., Zhou, X.P., Xie, X.L.: Fabrication of anionic polymer–carbon nanotube composite for a new configurative actuator. J. Compos. Mater. 45, 2055–2060 (2011)Google Scholar
  32. 32.
    Smela, E.: Conjugated polymer actuators for biomedical applications. Adv. Mater. 15, 481–494 (2003)Google Scholar
  33. 33.
    Osada, Y., Okuzaki, H., Hori, H.: A polymer gel with electrically driven motility. Nature 355, 242–244 (1992)Google Scholar
  34. 34.
    Lehmann, W., Skupin, H., Tolksdorf, C., Gebhard, E., Zentel, R., Kruger, P., Losche, M., Kremer, F.: Giant lateral electrostriction in ferroelectric liquid-crystalline elastomers. Nature 410, 447–450 (2001)Google Scholar
  35. 35.
    Kim, J., Yun, S., Ounaies, Z.: Discovery of cellulose as a smart material. Macromolecules 39, 4202–4206 (2006)Google Scholar
  36. 36.
    Liu, Y., Lv, H., Lan, X., Leng, J., Du, S.: Review of electro-active shape-memory polymer composite. Compos. Sci. Technol. 69, 2064–2068 (2009)Google Scholar
  37. 37.
    Lee, H.F., Yu, H.H.: Study of electroactive shape memory polyurethane–carbon nanotube hybrids. Soft Matter 7, 3801–3807 (2011)Google Scholar
  38. 38.
    Rus, D., Tolley, M.T.: Design fabrication and control of soft robots. Nature 521, 467–475 (2015)Google Scholar
  39. 39.
    Huang, H.W., Sakar, M.S., Petruska, A.J., Pane´, S., Nelson, B.J.: Soft micromachines with programmable motility and morphology. Nat. Commun. 7, 12263 (2016)Google Scholar
  40. 40.
    Takenaka, H., Torikai, E., Kawami, Y., Wakabayashi, N.: Solid polymer electrolyte water electrolysis. Int. J. Hydrog. Energy 7, 397–403 (1982)Google Scholar
  41. 41.
    Millet, P., Pineri, M., Durand, R.: New solid polymer electrolyte composites for water electrolysis. J. Appl. Electrochem. 19, 162–166 (1989)Google Scholar
  42. 42.
    Shahinpoor, M., Kim, K.J.: The effect of surface-electrode resistance on the performance of ionic polymer–metal composite (IPMC) artificial muscles. Smart Mater. Struct. 9, 543–551 (2000)Google Scholar
  43. 43.
    Chung, C.K., Fung, P.K., Hong, Y.Z., Ju, M.S., Lin, C.C.K., Wu, T.C.: A novel fabrication of ionic polymer–metal composites (IPMC) actuator with silver nanopowders. Sens. Actuator B 117, 367–375 (2006)Google Scholar
  44. 44.
    Zhou, W., Li, W.J., Xi, N., Ma, S.: Development of force-feedback controlled Nafion micromanipulators. In EAP Actuators and Devices. Proceedings of SPIE, vol. 4329, pp. 401–410 (2001)Google Scholar
  45. 45.
    Lee, S.G., Park, H.C., Pandita, S.D., Yoo, Y.: Performance improvement of IPMC (Ionic Polymer Metal Composites) for a flapping actuator. Int. J. Control Autom. Syst. 4, 748–755 (2006)Google Scholar
  46. 46.
    Park, I.S., Tiwari, R., Kim, K.J.: Sprayed sensor using IPMC paint. Adv. Sci. Technol. 61, 59–64 (2008)Google Scholar
  47. 47.
    Akle, B.J., Leo, D.J.: Characterization and modeling of extensional and bending actuation in ionomeric polymer transducers. Smart Mater. Struct. 16(4), 1348–1360 (2007)Google Scholar
  48. 48.
    Yoseph, B.C.: Electroactive polymer (EAP) actuators as artificial muscles—Reality, potential, and challenges. SPIE Press, Washington (2001)Google Scholar
  49. 49.
    Bao, X., Bar-Cohen, Y., Lih, S.: Measurements and macro models of ionomeric polymer-metal composites (IPMC). In: Smart Structures and Materials Symposium, paper 4695-27, March 2002 (2002)Google Scholar
  50. 50.
    Punning, A., Kruusmaa, M., Aabloo, A.: Surface resistance experiments with IPMC sensors and actuators. Sens. Actuators A Phys. 133, 200–209 (2007)Google Scholar
  51. 51.
    Kim, S.J., Kim, S.M., Kim, K.J., Kim, Y.H.: An electrode model for ionic polymer–metal composites. Smart Mater. Struct. 16, 2286–2295 (2007)Google Scholar
  52. 52.
    Tsuda, M., Dino, W.A., Kasai, H.: Behavior of hydrogen atom at Nafion-Pt interface. Solid State Commun. 134, 601–605 (2005)Google Scholar
  53. 53.
    Seeliger, D., Hartnig, C., Spohr, E.: Aqueous pore struture and proton dynamics in solvated Nafion membranes. Electrochim. Acta 50, 4234–4240 (2005)Google Scholar
  54. 54.
    Berezina, N.P., Kononenko, N.A., Sytcheva, A.A.R., Loza, N.V., Shkirskaya, S.A., Hegman, N., Pungor, A.: Perfluorinated nanocomposite membranes modified by polyaniline: electrotransport phenomena and morphology. Electrochim. Acta 54, 2342–2352 (2008)Google Scholar
  55. 55.
    Nemat-Nasser, S., Wu, Y.X.: Comparative experimental study of ionic polymer-metal composites with different backbone ionomers and in various cation forms. J. Appl. Phys. 93, 5255–5267 (2003)Google Scholar
  56. 56.
    Lu, Z., Lanagan, M., Manias, E., Macdonald, D.D.: Two-port transmission line technique for dielectric property characterization of polymer electrolyte membranes. J. Phys. Chem. B 113, 13551–13559 (2009)Google Scholar
  57. 57.
    Eisenberg, A.: Clustering of ions in organic polymers. A theoretical approach. Macromolecules 3, 147–154 (1970)Google Scholar
  58. 58.
    Wiles, K.B., Akle, B.J., Hickner, M.A., Bennett, M., Leo, D.J., McGrath, J.E.: Directly copolymerized poly(arylene sulfide sulfone) and poly(arylene ether sulfone) disulfonated copolymers for use in ionic polymer transducers. J. Electrochem. Soc. 154, P77–P85 (2007)Google Scholar
  59. 59.
    Chen, Z., Shen, Y., Xi, N., Tan, X.: Integrated sensing for ionic polymer–metal composite actuators using PVDF thin films. Smart Mater. Struct. 16(2), S262–S271 (2007)Google Scholar
  60. 60.
    Jin, N., Wang, B., Bian, K., Chen, Q., Xiong, K.: Performance of ionic polymer-metal composite (IPMC) with different surface roughening methods. Front. Mech. Eng. China 4, 430–435 (2009)Google Scholar
  61. 61.
    Tiwari, R. (ed.): Modeling and Characterization of IPMC Energy Harvesters. LAP Lambert Academic Publishing (2010)Google Scholar
  62. 62.
    Kim, S.M., Kim, K.J.: Palladium buffer-layered high performance ionic polymer–metal composites. Smart Mater. Struct. 17, 035011 (2008)Google Scholar
  63. 63.
    Park, I.S., Kim, K.J.: Multi-fields responsive ionic polymer-metal composite. Sens. Actuat A 135, 220–228 (2007)Google Scholar
  64. 64.
    Lee, J.P., Choi, S., Park, S.: Preparation of silica nanospheres and porous polymer membranes with controlled morphologies via nanophase separation. Nanoscale Res. Lett. 7(1), 440–447 (2012)Google Scholar
  65. 65.
    Akle, B.J., Leo, D.J.: Single-walled carbon nanotubes—ionic polymer electroactive hybrid transducers. J. Intell. Mater. Syst. Struct. 19, 905–915 (2008)Google Scholar
  66. 66.
    Brufau-Penella, J., Puig-Vidal, M., Giannone, P., Graziani, S., Strazzeri, S.: Characterization of the harvesting capabilities of an ionic polymer metal composite device. Smart Mater. Struct. 17, 015009 (2008)Google Scholar
  67. 67.
    Lee, D.Y., Park, I.S., Lee, M.H., Kim, K.J., Heo, S.: Ionic polymer–metal composite bending actuator loaded with multi-walled carbon nanotubes. Sens. Actuator sA 133, 117–127 (2007)Google Scholar
  68. 68.
    Lee, D.Y., Lee, M.H., Kim, K.J., Heo, S., Kim, B.Y., Lee, S.J.: Surf Coatings Tech. 200, 1916–1925 (2005)Google Scholar
  69. 69.
    Rosset, S., Niklaus, M., Dubois, P., Shea, H.R.: Metal ion implantation for the fabrication of stretchable electrodes on elastomers. Adv. Funct. Mater. 19(3), 470–478 (2009)Google Scholar
  70. 70.
    Rosset, S., Niklaus, M., Dubois, P., Shea, H.R.: Large-stroke dielectric elastomer actuators with ion-implanted electrodes. J. Microelectromech. Syst. 18(6), 1300–1308 (2009)Google Scholar
  71. 71.
    Johanson, U., Maeorg, U., Sammelselg, V., Brandell, D., Punning, A., Kruusmaa, M., Aabloo, A.: Electrode reactions in Cu-Pt coated ionic polymer actuators. Sens. Actuators B 131, 340–346 (2008)Google Scholar
  72. 72.
    Chen, Y.L., Chou, T.C.: Metals and alloys bonded on solid polymer electrolyte for electrochemical reduction of pure benzaldehyde without liquid supporting electrolyte. J. Electroanal. Chem. 360, 247–259 (1993)Google Scholar
  73. 73.
    Tiwari, R., Kim, K.J.: Effect of metal diffusion on mechanoelectric property of ionic polymer-metal composite. Appl. Phys. Lett. 97, 244104 (2010)Google Scholar
  74. 74.
    Sunghee, J., Jeomsik, S., Gyuseok, K., Sukmin, L., Museong, M.: In: Proceedings of IFMBE, vol. 77, pp. 2973–2976 (2007)Google Scholar
  75. 75.
    Akle, B.J., Leo, D.J., Hickner, M.A., Mcgrath, J.E.: Correlation of capacitance and actuation in ionomeric polymer transducers. J. Mater. Sci. 40, 3715–3724 (2005)Google Scholar
  76. 76.
    Lee, J.H., Lee, J.H., Nam, J.D., Choi, H., Jung, K., Jeon, J.W., Lee, Y.K., Kim, K.J., Tak, Y.: Water uptake and migration effects of electroactive ion-exchange polymer metal composite (IPMC) actuator. Sens. Actuators A 118, 98–106 (2005)Google Scholar
  77. 77.
    Shahinpoor, M.: Mechanoelectrical phenomena in ionic polymers. Math. Mech. Solids 8, 281–288 (2003)Google Scholar
  78. 78.
    Madden, J.D.W., Vandesteeg, N.A., Anquetil, P.A., Madden, P.G.A., Takshi, A., Pytel, R.Z., Lafontaine, S.R., Wieringa, P.A., Hunter, I.W.: Artificial muscle technology: physical principles and naval prospects. IEEE J. Oceanic Eng. 29, 706–728 (2004)Google Scholar
  79. 79.
    Tiwari, R., Garcia, E.: The state of understanding of ionic polymer metal composite architecture: a review. Smart Mater. Struct. 20, 083001 (2011)Google Scholar
  80. 80.
    Xue, Z., Tang, Y., Duan, X., Ye, Y., Xie, X., Zhou, X.: Ionic polymer–metal composite actuators obtained from sulfonated poly (ether ether sulfone) ion-exchange membranes. Compos. Part A 81, 13–21 (2016)Google Scholar
  81. 81.
    Dubois, P., Rosset, S., Koster, S., Buforn, J.M., Stauffer, J., Mikhaïlov, S., Dadras, M., de Rooij, N.F., Shea, H.: Microactuators based on ion-implanted dielectric electroactive polymer (EAP) membranes. Sens. Actuators A Phys. 130(131), 147–154 (2006)Google Scholar
  82. 82.
    O’Brien, B.M., Rosset, S., Anderson, I.A., Shea, H.R.: Ion implanted dielectric elastomer circuits. Appl. Phys. A 111, 943–950 (2013)Google Scholar
  83. 83.
    Wang, Z., Li, X., Zhao, C., Ni, H., Na, H.: Sulfonated poly(ether ether sulfone) copolymers for proton exchange membrane fuel cells. J. Appl. Polym. Sci. 104, 1443–1450 (2007)Google Scholar
  84. 84.
    Unveren, E.E., Erdogan, T., Çelebi, S.S., Inan, T.Y.: Role of post-sulfonation of poly(ether ether sulfone) in proton conductivity and chemical stability of its proton exchange membranes for fuel cell. Int. J. Hydrog. Energy 35, 3736–3744 (2010)Google Scholar
  85. 85.
    Kim, S.J., Pugal, D., Jung, Y., Wong, J., Kim, K.J., Yim, W.: A rod-shaped ionic polymer–metal composite for use as an active catheter-platform. In: Proceedings of ASME Smart Materials, Adaptive Structures and Intelligent Systems, vol. 2, pp. 145–151 (2010)Google Scholar
  86. 86.
    Hubbard, J.J., Fleming, M., Leang, K.K., Palmre, V., Pugal, D., Kim, K.J.: Characterization of sectored-electrode IPMC-based propulsors for underwater locomotion. In: Proceedings of ASME Smart Materials Adaptive Structures and Intelligent Systems, vol. 1, pp. 171–180 (2011)Google Scholar
  87. 87.
    Pugal, D., Kim, K.J., Leang, K.K., Palmre, V.: Modeling and designing IPMCs for twisting motion: electromechanical and mechanoelectrical transduction. In: Proceedings of SPIE, vol. 7976, pp. 1S/1–9 (2011)Google Scholar
  88. 88.
    Chen, D., Pei, Q.: Electronic muscles and skins: a review of soft sensors and actuators. Chem. Rev. 117, 11239–11268 (2017)Google Scholar
  89. 89.
    Asaka, K., Oguro, K.: Active microcatheter and biomedical soft devices based on IPMC actuators. In: Carpi, F., Smela, E. (eds.) Biomedical Applications of Electroactive Polymer Actuators, pp. 121–136. Wiley, United Kingdom (2009)Google Scholar
  90. 90.
    Chen, Z., Um, T.I., Smith, H.B.: A novel fabrication of ionic polymer–metal composite membrane actuator capable of 3-dimensional kinematic motions. Sens. Actuators A 168, 131–139 (2011)Google Scholar
  91. 91.
    Wu, Y.: Sensors and actuators for the cochlear implant using inherently conducting polymers. Ph.D.thesis, University of Wollongong (2006)Google Scholar
  92. 92.
    Shahinpoor, M.: Implantable heart-assist and compression devices employing an active network of electrically-controllable ionic polymer-metal nanocomposites. In: Carpi, F., Smela, É. (eds.) Biomedical Applications of Electroactive Polymer Actuators, pp. 137–160. Wiley, United Kingdom (2009)Google Scholar
  93. 93.
    Sherif, H.M.: The artificial ventricle: a conceptual design for a novel mechanical circulatory support system. Minim. Invasive Ther. Allied Technol. 18, 178–180 (2009)Google Scholar
  94. 94.
    Hanson, B., Richardson, R., Davies, G., Watterson, K., Levesley, M., Walker, P.: Control of a non-blood contacting cardiac assist device. In: IASTED International Conference on Biomedical Engineering BioMED, vol. 3, pp. 679–684 (2005)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute of Macromolecular ChemistryIasiRomania

Personalised recommendations