Advertisement

Social Network Measures and Analysis

  • Samer Al-khateeb
  • Nitin Agarwal
Chapter
Part of the SpringerBriefs in Cybersecurity book series (BRIEFSCYBER)

Abstract

In this chapter, we present basic terminologies and concepts of graph theory in addition to a few social network measures that will be used throughout the book. Then we explain more advanced metrics and concepts that would leverage the basic network measures such as estimating blogs and bloggers’ influence scores and focal structures analysis (FSA). These concepts were used in many real-world cases to find coordinating sets of individuals (coordinating groups) in a given graph. All the concepts and measures are described and illustrated with examples. This chapter would provide the readers with basic understanding of graph-theoretic concepts and social network measures that will help understand the concepts of social cyber forensics in the later chapters.

Keywords

Graph theory Graph data structures Social network analysis (SNA) Centrality measures Clustering coefficient Modularity Influence 

References

  1. 1.
    L. Mastin, 18th Century Mathematics - Euler (2010), [Online]. Available: http://www.storyofmathematics.com/18th_euler.html
  2. 2.
    E.W. Weisstein, Knigsberg Bridge Problem (2018), [Online]. Available: http://mathworld.wolfram.com/KoenigsbergBridgeProblem.html
  3. 3.
    B. Doerr, M. Fouz, T. Friedrich, Why rumors spread so quickly in social networks. Commun. ACM 55(6), 70–75 (2012)CrossRefGoogle Scholar
  4. 4.
    J.H. Fowler, N.A. Christakis, Dynamic spread of happiness in a large social network: longitudinal analysis over 20 years in the Framingham heart study. BMJ 337, a2338 (2008)CrossRefGoogle Scholar
  5. 5.
    S. Fortunato, Community detection in graphs. Phys. Rep. 486(3–5), 75–174 (2010)MathSciNetCrossRefGoogle Scholar
  6. 6.
    O. Mason, M. Verwoerd, Graph theory and networks in biology. IET Syst. Biol. 1(2), 89–119 (2007)CrossRefGoogle Scholar
  7. 7.
    M.J. Keeling, K.T. Eames, Networks and epidemic models. J. R. Soc. Interface 2(4), 295–307 (2005)CrossRefGoogle Scholar
  8. 8.
    A.T. Balaban, Applications of graph theory in chemistry. J. Chem. Inf. Comput. Sci. 25(3), 334–343 (1985)CrossRefGoogle Scholar
  9. 9.
    R. Zafarani, M.A. Abbasi, H. Liu, Social Media Mining: An Introduction (Cambridge University Press, Cambridge, 2014)CrossRefGoogle Scholar
  10. 10.
    E.W. Weisstein, K-Partite Graph (2018). [Online]. Available: http://mathworld.wolfram.com/k-PartiteGraph.html
  11. 11.
    M. Timilsina, I. Hulpus, C. Hayes, B. Davis, Heterogeneous Graphs for Academic Impact Assessment, Amsterdam, Netherlands (2015). [Online]. Available: http://elsevier.kdu.insight-centre.org/wp-content/uploads/altmetrics_2015_poster.pdf Google Scholar
  12. 12.
    S. Wasserman, K. Faust, Social Network Analysis: Methods and Applications, vol. 8 (Cambridge University Press, Cambridge, 1994)CrossRefGoogle Scholar
  13. 13.
    D. Snyder, E.L. Kick, Structural position in the world system and economic growth, 1955–1970: a multiple-network analysis of transnational interactions. Am. J. Sociol. 84(5), 1096–1126 (1979)CrossRefGoogle Scholar
  14. 14.
    R.J. Nemeth, D.A. Smith, International trade and world-system structure: a multiple network analysis. Review (Fernand Braudel Center) 8(4), 517–560 (1985)Google Scholar
  15. 15.
    L.A. Goodman, Criteria for determining whether certain categories in a cross-classification table should be combined, with special reference to occupational categories in an occupational mobility table. Am. J. Sociol. 87(3), 612–650 (1981)CrossRefGoogle Scholar
  16. 16.
    B. Kapferer, Norms and the Manipulation of Relationships in a Work Context (Manchester University Press, Manchester, 1969)Google Scholar
  17. 17.
    W.W. Zachary, An information flow model for conflict and fission in small groups. J. Anthropol. Res. 33(4), 452–473 (1977)CrossRefGoogle Scholar
  18. 18.
    B. Thurman, In the office: networks and coalitions. Soc. Networks 2(1), 47–63 (1979)CrossRefGoogle Scholar
  19. 19.
    J. Travers, S. Milgram, The small world problem. Phys. Today 1(1), 61–67 (1967)Google Scholar
  20. 20.
    R. DeJordy, D. Halgin, Introduction to Ego Network Analysis (Boston College and the Winston Center for Leadership & Ethics, Boston, 2008)Google Scholar
  21. 21.
    G. Simmel, Sociology: Investigations on the Forms of Sociation (Duncker & Humblot, Berlin, 1908)Google Scholar
  22. 22.
    R.D. Luce, A.D. Perry, A method of matrix analysis of group structure. Psychometrika 14(2), 95–116 (1949)MathSciNetCrossRefGoogle Scholar
  23. 23.
    D.J. Watts, S.H. Strogatz, Collective dynamics of small-world networks. Nature 393(6684), 440 (1998)Google Scholar
  24. 24.
    M. Girvan, M.E.J. Newman, Community structure in social and biological networks. Proc. Natl. Acad. Sci. 99(12), 7821–7826 (2002). [Online]. Available: http://www.pnas.org/content/99/12/7821.abstract
  25. 25.
    M.E. Newman, Modularity and community structure in networks. Proc. Natl. Acad. Sci. 103(23), 8577–8582 (2006). [Online]. Available: http://www.pnas.org/content/103/23/8577.short
  26. 26.
    D. Gillmor, We the media: the rise of citizen journalists. Natl. Civ. Rev. 93(3), 58–63 (2004)CrossRefGoogle Scholar
  27. 27.
    B. Etling, J. Kelly, R. Faris, J. Palfrey, Mapping the Arabic blogosphere: politics, culture, and dissent, in Media Evolution on the Eve of the Arab Spring (Springer, New York, 2014), pp. 49–74CrossRefGoogle Scholar
  28. 28.
    E.L. Mead, M.N. Hussain, M. Nooman, S. Al-khateeb, N. Agarwal, Assessing situation awareness through blogosphere: a case study on Venezuelan socio-political crisis and the migrant influx, in The Seventh International Conference on Social Media Technologies, Communication, and Informatics (SOTICS 2017) (The International Academy, Research and Industry Association (IARIA), 2017), pp. 22–29Google Scholar
  29. 29.
    N. Agarwal, H. Liu, L. Tang, P.S. Yu, Identifying the influential bloggers in a community, in Proceedings of the 2008 International Conference on Web Search and Data Mining (ACM, New York, 2008), pp. 207–218Google Scholar
  30. 30.
    N. Agarwal, H. Liu, L. Tang, S.Y. Philip, Modeling blogger influence in a community. Soc. Netw. Anal. Min. 2(2), 139–162. [Online]. Available: http://bit.ly/2mOw8HM
  31. 31.
    S. Kumar, R. Zafarani, M.A. Abbasi, G. Barbier, H. Liu, Convergence of influential bloggers for topic discovery in the blogosphere, in Advances in Social Computing (Springer, Berlin, 2010), pp. 406–412. [Online]. Available: http://bit.ly/2nxdHaA
  32. 32.
    A. Java, P. Kolari, T. Finin, T. Oates, Modeling the spread of influence on the blogosphere, in Proceedings of the 15th International World Wide Web Conference (2006), pp. 22–26. [Online]. Available: http://bit.ly/2nf4ZAA
  33. 33.
    K.E. Gill, How can we measure the influence of the blogosphere, in WWW 2004 Workshop on the Weblogging Ecosystem: Aggregation, Analysis and Dynamics (Citeseer, New York, 2004). [Online]. Available: http://bit.ly/2nt8bcs Google Scholar
  34. 34.
    M.N. Hussain, A. Obadimu, K.K. Bandeli, M. Nooman, S. Al-khateeb, N. Agarwal, A framework for blog data collection: challenges and opportunities, in The IARIA International Symposium on Designing, Validating, and Using Datasets (DATASETS 2017) (The International Academy, Research and Industry Association (IARIA), 2017)Google Scholar
  35. 35.
    F. Şen, R. Wigand, N. Agarwal, S. Tokdemir, R. Kasprzyk, Focal structures analysis: Identifying influential sets of individuals in a social network. Soc. Netw. Anal. Min. 6(1), 1–22 (2016). [Online]. Available: http://bit.ly/1qS8Y4D
  36. 36.
    V.D. Blondel, J.-L. Guillaume, R. Lambiotte, E. Lefebvre, Fast unfolding of communities in large networks. J. Stat. Mech Theory Exp. 2008(10), P10008 (2008)Google Scholar
  37. 37.
    P. Jaccard, The distribution of the flora in the alpine zone. New Phytol. 11(2), 37–50 (1912)CrossRefGoogle Scholar
  38. 38.
    F. Sen, N. Nagisetty, T. Viangteeravat, N. Agarwal, An online platform for focal structures analysis-analyzing smaller and more pertinent groups using a web tool, in 2015 AAAI Spring Symposium Series (2015)Google Scholar
  39. 39.
    S. Yuce, N. Agarwal, R.T. Wigand, M. Lim, R.S. Robinson, Studying the evolution of online collective action: Saudi Arabian womens oct26drivingtwitter campaign, in International Conference on Social Computing, Behavioral-Cultural Modeling, and Prediction (Springer, Cham, 2014), pp. 413–420Google Scholar
  40. 40.
    M. Seddon, How a British Blogger Became an Unlikely Star of the Ukraine Conflict and Russia Today, (BuzzFeed News, New York, 2014). [Online]. Available: http://bzfd.it/1qpuL2z Google Scholar
  41. 41.
    S. Al-khateeb, N. Agarwal, R. Galeano, R. Goolsby, Examining the use of botnets and their evolution in propaganda dissemination. Def. Strateg. Commun. 2(1), 87–112 (2017)CrossRefGoogle Scholar

Copyright information

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Samer Al-khateeb
    • 1
  • Nitin Agarwal
    • 2
  1. 1.Department of Journalism, Media & ComputingCreighton UniversityOmahaUSA
  2. 2.Information Science DepartmentUniversity of Arkansas at Little RockLittle RockUSA

Personalised recommendations