The Global Study of Riemannian-Finsler Geometry

  • Katsuhiro Shiohama
  • Bankteshwar Tiwari


The aim of this article is to present a comparative review of Riemannian and Finsler geometry. The structures of cut and conjugate loci on Riemannian manifolds have been discussed by many geometers including H. Busemann, M. Berger and W. Klingenberg. The key point in the study of Finsler manifolds is the non-symmetric property of its distance functions. We discuss fundamental results on the cut and conjugate loci of Finsler manifolds and note the differences between Riemannian and Finsler manifolds in these respects. The topological and differential structures on Riemannian manifolds, in the presence of convex functions, has been an active field of research in the second half of twentieth century. We discuss some results on Riemannian manifolds with convex functions and their recently proved analogues in the field of Finsler manifolds.


Injectivity radius Cut locus Rauch conjecture Berger–Omori lemma Whitehead convexity Busemann function Klingenberg lemma Busemann-type geometry 

AMS Classification:

53C60 53C22 53C70 51H25 



The author’s “Katsuhiro Shiohama” work was supported by JSPS KAKENHI Grant Number15K04864.


  1. 1.
    D. Bao, S.S. Chern and Z. Shen, An Introduction to Riemannian-Finsler Geometry, 200, Graduate Texts in Math. Springer-Verlag, New York, 2000.CrossRefGoogle Scholar
  2. 2.
    M. Berger, Sur les variétés a courbure positive de diamètre minimum, Comment. Math. Helv., 35, (1961), 28–34.MathSciNetCrossRefGoogle Scholar
  3. 3.
    M. Berger, Sur quelques variétés riemannienne \(\frac {1}{4}\)-pincèes, Bull. Soc. Math. France, 88, (1960), 57–71.Google Scholar
  4. 4.
    A. Besse, Manifolds all of whose geodesics are closed, Springer, Berlin (1978).CrossRefGoogle Scholar
  5. 5.
    U. Burago and D. Zalgallar, Convex set in Riemannian spaces of non-negative curvature, Russian Mathematical Surveys, 32:3 (1977), 1–57 (Uspehki Mat. Nauk 32:3 (1977), 3–55.)CrossRefGoogle Scholar
  6. 6.
    H. Busemann, Recent Synthetic Differential Geometry, Springer-Verlag, (1970).CrossRefGoogle Scholar
  7. 7.
    H. Busemann, Selected works, 2 volumes, (ed. A. Papadopoulos), Springer Verlag, 2018.Google Scholar
  8. 8.
    H. Busemann, The Geometry of Geodesics, Pure and Applied Mathematics, VI, Academic Press Inc. New York, 1955.Google Scholar
  9. 9.
    J. Cheeger and D. Ebin, Comparison Theorems in Riemannian Geometry, AMS Chelsia Publ. Amer. Math. Soc. Provdence, Rhode Island, 2008.zbMATHGoogle Scholar
  10. 10.
    J. Cheeger and D. Gromoll, On the structure of complete manifolds of non-negative curvature. Ann. of Math. 96, 413–443 (1972).MathSciNetCrossRefGoogle Scholar
  11. 11.
    S.S. Chern, Finsler Geometry is just Riemannian Geometry without the Quadratic Restrictions, Notices of the AMS, (1996), 959–963.Google Scholar
  12. 12.
    S.S. Chern, W.H. Chen and K.S. Lam, Lectures on Differential Geometry, 2005.Google Scholar
  13. 13.
    R. Greene and K. Shiohama, Convex functions on complete noncompact manifolds: Differentiable structure, Ann. Scient. Ëc. Norm. Sup. 14, 357–367 (1981).MathSciNetCrossRefGoogle Scholar
  14. 14.
    R. Greene and K. Shiohama, Convex functions on complete noncompact manifolds; Topological structure, Invent. Math. 63, 129–157 (1981).MathSciNetCrossRefGoogle Scholar
  15. 15.
    R. Greene and K. Shiohama, The isometry groups of manifolds admitting nonconstant convex functions, J. Math. Soc. Japan, 39 1–16 (1987).MathSciNetCrossRefGoogle Scholar
  16. 16.
    D. Gromoll and W. Meyer, On complete open manifolds of positive curvature. Ann. of Math. 90, 75–90 (1969).MathSciNetCrossRefGoogle Scholar
  17. 17.
    N. Innami, A classification of Busemann G-surfaces which possess convex functions, Acta Math. 148, 15–29 (1982).MathSciNetCrossRefGoogle Scholar
  18. 18.
    N. Innami, On the terminal points of co-rays and rays, Arch. Math. (Basel), 45, No.5, 468–470 (1985).MathSciNetCrossRefGoogle Scholar
  19. 19.
    N. Innami, Splitting theorems of Riemannian manifolds, Compositio Math. 47 237–247 (1982).MathSciNetzbMATHGoogle Scholar
  20. 20.
    N. Innami, Y. Itokawa, T. Nagano and K. Shiohama, Blaschke Finsler Manifolds and actions of projective Randers changes on cut loci, Preprint 2017.Google Scholar
  21. 21.
    N. Innami, K. Shiohama and T. Soga, The cut loci, conjugate loci and poles in a complete Riemannian manifold, GAFA, 22, 1400–1406 (2012).MathSciNetzbMATHGoogle Scholar
  22. 22.
    Y. Itokawa, K. Shiohama and B. Tiwari, Strictly convex functions on complete Finsler manifolds, Proc. Indian Acad. Sci. (Math. Sci.) 126, No. 623–627, (2016).MathSciNetCrossRefGoogle Scholar
  23. 23.
    W. Klingenberg, Contributions to Riemannian geometry in the large, Ann. of Math. 69, (1959), 654–666.MathSciNetCrossRefGoogle Scholar
  24. 24.
    W. Klingenberg, Riemannian Geometry, de Gruyter Studies in Math. 1, de Gruyter, Berlin (1982).Google Scholar
  25. 25.
    Y. Mashiko, A splitting theorem for Alexandrov spaces, Pacific J. Math. 204, 445–458 (2002).MathSciNetCrossRefGoogle Scholar
  26. 26.
    Y. Mashiko, Affine functions on Alexandrov surfaces, Osaka J. Math. 36 853–859 (1999).MathSciNetzbMATHGoogle Scholar
  27. 27.
    Y. Mashiko, Convex functions on Alexandrov surfaces, Trans. Amer. Math. Soc. 351, no. 9, 3549–3567 (2006).Google Scholar
  28. 28.
    M. Matsumoto, A slope of a mountain is a Finsler surface with respect to a time measure, J. Math. Kyoto Univ., 29(1989), no. 1, 17–25.MathSciNetCrossRefGoogle Scholar
  29. 29.
    S.B. Myers, Connections between differential geometry and topology I, Duke Math. J. 1, 376–391 (1935).MathSciNetCrossRefGoogle Scholar
  30. 30.
    S.B. Myers, Connections between differential geometry and topology II, Duke Math. J. 2, 95–102 (1936).MathSciNetCrossRefGoogle Scholar
  31. 31.
    H. Omori, A class of riemannian metrics on a manifold, J. Differential Geom., 2, (1968), 233–252.MathSciNetCrossRefGoogle Scholar
  32. 32.
    G. Perelman, Proof of soul conjecture of Cheeger-Gromoll, J.Diff. Geom. 40, (1994), 299–305.MathSciNetzbMATHGoogle Scholar
  33. 33.
    H. Rademacher, Nonreversible Finsler metrics of positive flag curvature, Riemann-Finsler Geometry, MSRI Publications, 50, (2004), 261–302.MathSciNetzbMATHGoogle Scholar
  34. 34.
    H. Rauch, Geodesics and Curvature in Differential Geometry in the Large, Yeshiva University Press, New York (1959).Google Scholar
  35. 35.
    B. Riemann, On the Hypotheses which lie at the Bases of Geometry, Translated by William Kingdon Clifford, Nature, VIII, Nos. 183, 184, (1873), 14–17,36–37.Google Scholar
  36. 36.
    S. Sabau and K. Shiohama, Topology of complete Finsler manifolds admitting convex functions, Pacific J. Math. 276, No 2, (2015), 459–481.MathSciNetCrossRefGoogle Scholar
  37. 37.
    T. Sakai, Riemannian Geometry, Mathematical Monograph, 8 Amer. Math. Soc. (1996).Google Scholar
  38. 38.
    V.A. Sharafutdinov, The Pogorelov-Klingenberg theorem for manifolds homeomorphic to R n. Sib. Math. J., 18 (1977), 915–925.MathSciNetzbMATHGoogle Scholar
  39. 39.
    K. Shiohama, Topology of complete noncompact manifolds, Geometry of Geodesics and Related Topics, Advanced Studies in Pure Mathematics 3, 432–450, (1984).Google Scholar
  40. 40.
    K. Shiohama, Riemannian and Finsler Geometry in the Large, Recent Advances in Mathematics, RMS-Lecture Notes Series 21, (2015), 163–179.MathSciNetzbMATHGoogle Scholar
  41. 41.
    K. Shiohama and M. Tanaka, Cut loci and distance spheres on Alexandrov surfaces, Round Table in Differential Geometry, Séminaire et Congrès, Collection SFM, no. 1, 553–560 (1996).Google Scholar
  42. 42.
    A. Weinstein, The cut locus and conjugate locus of a Riemannian manifold, Ann. of Math. (2), 36 29–41, (1968).MathSciNetCrossRefGoogle Scholar
  43. 43.
    J.H.C. Whitehead, Convex regions in the geometry of paths, Quarterly Journal of Mathematics (Oxford), 3, (1932), 33–42.CrossRefGoogle Scholar
  44. 44.
    J.H.C. Whitehead, On the covering of a complete space by the geodesics through a point, Ann. of Math. (2) 36, (1935), 679–704.MathSciNetCrossRefGoogle Scholar
  45. 45.
    T. Yamaguchi, The isometry groups of Riemannian manifolds admitting strictly convex functions, Ann. Sci. École Norm. Sup. 15, (1982), 205–212.MathSciNetCrossRefGoogle Scholar
  46. 46.
    T. Yamaguchi, Uniformly locally convex filtrations on complete Riemannian manifolds, Curvature and Topology of Riemannian Manifolds–Proceedings, Katata 1985, Lecture Notes in Mathematics, 1201, (1985) 308–318, Springer-Verlag.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Katsuhiro Shiohama
    • 1
  • Bankteshwar Tiwari
    • 2
  1. 1.Institute of Information ScienceFukuoka Institute of TechnologyFukuokaJapan
  2. 2.Centre for Interdisciplinary Mathematical Sciences, Institute of ScienceBanaras Hindu UniversityVaranasiIndia

Personalised recommendations