Advertisement

Bioprospecting Model for a New Colombia Drug Discovery Initiative in the Pharmaceutical Industry

  • Juan BuenoEmail author
  • Sebastian Ritoré
Chapter

Abstract

In these times of environmental and global threats that prompt the emergence of infectious diseases, new challenges require new initiatives for developing therapeutics and bringing them to market, for obtaining commitments from the market, and for acquiring public research and development funding. Organizational models have emerged to expedite these initiatives, such as public–private partnerships and not-for-profit product development partnerships, including the Drugs for Neglected Diseases Initiative, the Medicines for Malaria Venture, and the Global Alliance for Tuberculosis Drug Development. One promising approach in relation to drug discovery that captures the natural value of biodiversity is bioprospecting: in order to treat disease, this multidisciplinary line combines ecology, pharmacology, and therapeutics in the search for new chemical entities from organisms native to tropical rain forests and other ecosystems. Their effectiveness inevitably varies, but the International Cooperative Biodiversity Groups program of the National Institutes of Health identifies several advantages in terms of economic growth and in other ways: they help to prevent biodiversity loss, promote the building of scientific capacity and the protection of intellectual property rights in developing countries, and boost the search for new biological resources. Nearly 30% of the new drugs approved by the Food and Drug Administration between 2008 and 2012 originated from natural products, which, to extrapolate from biodiversity analyses under the Nagoya Protocol, indicates a large source for new drugs and potentially a large market for them. Furthermore, it has been estimated that the benefits in this area come from preclinical research, and that 17% of pharmaceutical research is being undertaken by small companies; these firms are developing projects to evaluate the biological consequences of biodiversity in order to develop new products, and they produce a third of the new drugs entering the market. Finally, this chapter shows the potential of Colombian biodiversity for the pharmaceutical industry in a model that maintains the link between conservation and bioprospecting in order to achieve sustainable economic development connected to human health.

Keywords

Bioprospecting Colombian biodiversity Drug discovery Pharmaceutical industry 

References

  1. Arundel, A., & Sawaya, D. (2009). The Bioeconomy to 2030: Designing a Policy Agenda. Retrieved from http://www.oecd.org/futures/longtermtechnologicalsocietalchallenges/thebioeconomyto2030designingapolicyagenda.htm
  2. Amandine, B. (2010). Technological Choices in International Environmental Negotiations: An Actor—Network Analysis. Business & Society, 49(4), 570–590.Google Scholar
  3. Balconi, M., & Lorenzi, V. (2017). The Increasing Role of Contract Research Organizations in the Evolution of the Biopharmaceutical Industry. African Journal of Business Management, 11(18), 478–490.Google Scholar
  4. Billette de Villemeur, E., & Versaevel, B. (2017). One Lab, Two Firms, Many Possibilities: On R&D outsourcing in the Biopharmaceutical Industry. Retrieved from https://mpra.ub.uni-muenchen.de/76903/1/MPRA_paper_76903.pdf
  5. Bueno, J. (2017a). Bioprospecting and Drug Development, Parameters for a Rational Search and Validation of Biodiversity. Journal of Microbial and Biochemical Technology, 9, e128.Google Scholar
  6. Bueno, J. (2017b). Fungal Bionanotechnology, When Knowledge Merge into a New Discipline to Combat Antimicrobial Resistance. In Fungal Nanotechnology (pp. 189–206). Cham: Springer.Google Scholar
  7. Bueno, J., Demirci, F., & Baser, K. H. C. (2017). Antimicrobial Strategies in Novel Drug Delivery Systems: Applications in the Treatment of Skin and Soft Tissue Infections. In The Microbiology of Skin, Soft Tissue, Bone and Joint Infections (pp. 271–286). Boston: Academic Press.Google Scholar
  8. Cagliano, A. C., Grimaldi, S., & Rafele, C. (2015). Choosing Project Risk Management Techniques. A Theoretical Framework. Journal of Risk Research, 18(2), 232–248.Google Scholar
  9. Cheng, X., Zhao, S. G., Xiao, X., & Chou, K. C. (2017). iATC-mHyb: A Hybrid Multi-label Classifier for Predicting the Classification of Anatomical Therapeutic Chemicals. Oncotarget, 8(35), 58494.Google Scholar
  10. Chesher, D. (2008). Evaluating Assay Precision. The Clinical Biochemist Reviews, 29(Suppl 1), S23.Google Scholar
  11. Colombia, C. N. Ley 1753 de 2015 Por la cual se expide el Plan Nacional de Desarrollo 2014–2018 todos por un nuevo país. Bogotá DC: DNP Departamento Nacional de Planeación. Retrieved from https://colaboracion.dnp.gov.co/CDT/PND/PND%202014-2018%20Tomo%201%20internet.pdf
  12. Consejo privado de competitividad. (2016). Índice departamental de competitividad. Retrieved from https://compite.com.co/wp-content/uploads/2016/07/CPC_IDC-2016.pdf
  13. Cotes Prado, A. M., Meneses, B., Villamizar, L. S. R., Mogollón, F. Z., Martínez, M. V. A., & Prado, H. A. M. C. (2012). Bioprospección para el desarrollo del sector agropecuario de Colombia (No. Doc. 26007) CO-BAC, Bogotá.Google Scholar
  14. De Witt, A., Osseweijer, P., & Pierce, R. (2017). Understanding Public Perceptions of Biotechnology Through the “Integrative Worldview Framework”. Public Understanding of Science, 26(1), 70–88.Google Scholar
  15. Departamento Administrativo de Ciencia, Tecnología e Innovación (COLCIENCIAS). (2017). Resolución 0036 de 2017 por “La cual se adoptan los lineamientos de la presentación de proyectos de oferta institucional de inversión en Ciencia, Tecnología e Innovación”. Retrieved from http://www.colciencias.gov.co/sites/default/files/upload/reglamentacion/resolucion-0036-2017.pdf
  16. Departamento Nacional de Planeación. (2011). Documento CONPES 3697, Política para el desarrollo comercial de la biotecnología a partir del uso sostenible de la biodiversidad. Retrieved from https://www.cbd.int/doc/measures/abs/post-protocol/msr-abs-co-es.pdf
  17. DiMasi, J. A., Grabowski, H. G., & Hansen, R. W. (2016). Innovation in the Pharmaceutical Industry: New Estimates of R&D Costs. Journal of Health Economics, 47, 20–33.Google Scholar
  18. Domínguez Molina, Á. M. (2012). Aproximación al estado actual de la bioprospección en Colombia y propuesta para la implementación del plan nacional en bioprospección. Master’s thesis, Facultad de Estudios Ambientales y Rurales. Retrieved from https://repository.javeriana.edu.co/bitstream/handle/10554/12379/DominguezMolinaAngelaMaria2012.pdf?sequence=1
  19. Díaz, B. M. V., Gallo, J. J., & Plazas, C. E. (2016). Propuesta de una metodología para el estudio de competencia tecnológica, en empresas fabricantes de medicamentos. Universidad & Empresa, 18(31), 11–27.Google Scholar
  20. Erden, Z. (2017). The Publishing and Patenting Strategies of Successful University Spinoffs in the Biopharmaceutical Industry. Drug Discovery Today, 22(1), 5–9.Google Scholar
  21. Feigembaun, A. V. (1991). Key Systems Activities for Total Quality Control. In A. V. Feigembaun (Ed.), Total Quality Control (p. 94). Estados Unidos: McGraw-Hill.Google Scholar
  22. Firn, R. D. (2003). Bioprospecting–Why Is It So Unrewarding? Biodiversity & Conservation, 12(2), 207–216.Google Scholar
  23. Food and Drug Administration. (2016). Novel New Drugs, 2015 Summary. Retrieved from https://www.fda.gov/downloads/drugs/developmentapprovalprocess/druginnovation/ucm481709.pdf
  24. Gallón, A. I. M. (2011). La biodiversidad y la biotecnología en la facultad de química farmacéutica de la Universidad de Antioquia, a propósito del documento conpes 3697 de 2011. Vitae, 18(2), 111–113.Google Scholar
  25. Gautam, A., & Pan, X. (2016). The Changing Model of Big Pharma: Impact of Key Trends. Drug Discovery Today, 21(3), 379–384.Google Scholar
  26. Gonzales, C., Villa, J. M., & Velasco, R. (2007). Biotecnología: desde el punto de vista de los negocios. Facultad de Ciencias Agropecuarias, 5(1), 36–41.Google Scholar
  27. Goyes, D. R., & South, N. (2015). Land-grabs, Biopiracy and the Inversion of Justice in Colombia. British Journal of Criminology, 56(3), 558–577.Google Scholar
  28. Griesenauer, R. H., & Kinch, M. S. (2017). 2016 in Review: FDA Approvals of New Molecular Entities. Drug Discovery Today, 22(11), 1593–1597.Google Scholar
  29. Hernández, M. C. (2008). Propuesta de apoyo para una Gestión eficiente de la biotecnología. Revista Escuela de Administración de Negocios, 62.Google Scholar
  30. Hernández, R. S., & Miranda, P. P. (2015). Una mirada a la industria farmacéutica en Colombia. REVISTA FACCEA, 4(2), 107–115.Google Scholar
  31. Hover, B. M., Kim, S. H., Katz, M., Charlop-Powers, Z., et al. (2018). Culture-independent Discovery of the Malacidins as Calcium-dependent Antibiotics with Activity Against Multidrug-resistant Gram-positive Pathogens. Nature Microbiology, 3(4), 415–422.Google Scholar
  32. ICH Harmonized Tripartite. (2005). Validation of Analytical Procedures: Text and Methodology. Q2 (R1), Vol. 1.Google Scholar
  33. Jiménez, T., Cárdenas, J., & Soler-Tovar, D. (2017). Biocomercio en el contexto suramericano: Colombia y Perú como estudios de caso. Revista de Medicina Veterinaria, 35, 9–15.Google Scholar
  34. Kang, K. N., Jung, C. S., & Ryu, T. K. (2015). The Nagoya Protocol and the Biotechnology Industry. International Journal of Pharma Medicine and Biological Sciences, 4(3), 209.Google Scholar
  35. Kamuriwo, D. S., & Baden-Fuller, C. (2016). Knowledge Integration Using Product R&D Outsourcing in Biotechnology. Research Policy, 45(5), 1031–1045.Google Scholar
  36. Kerzner, H., & Kerzner, H. R. (2017). Project Management: A Systems Approach to Planning, Scheduling, and Controlling. New York: John Wiley & Sons.Google Scholar
  37. Kusari, S., Singh, S., & Jayabaskaran, C. (2014). Biotechnological Potential of Plant-associated Endophytic Fungi: Hope Versus Hype. Trends in Biotechnology, 32(6), 297–303.Google Scholar
  38. Map, T. (2015). Trade Statistics for International Business Development. In Geneva, Switzerland: International Trade Centre (United Nations Conference on Trade and Development-World Trade Organization). Retrieved from http://www.trademap.org
  39. Marín, C., & Parra, S. (2015). Bitácora de flora. Guía visual de plantas de páramos de Colombia. Retrieved from repository.humboldt.org.co/bitstream/handle/20.500.11761/9283/BitacoraFLORA-Agosto11-Final_Digital.pdf?sequence=1&isAllowed=y
  40. Mazzucato, M. (2015). The Green Entrepreneurial State. In I. Scoones, M. Leach, & P. Newell, (Eds.), The Politics of Green Transformations (pp. 134–152). London: Routledge.Google Scholar
  41. Mendoza, C. A. S. (2014). Análisis de los indicadores de biocomercio en America (Colombia). Asuntos Económicos y Administrativos, 27, 331–341.Google Scholar
  42. Mendoza-Ruiz, A., Acosta, A., Escamilla, E. P. V., & Torres, M. C. L. (2017). Pharmaceutical Policy in Colombia. In Pharmaceutical Policy in Countries with Developing Healthcare Systems (pp. 193–219). Springer International Publishing.Google Scholar
  43. Ministerio de Agricultura y Desarrollo Rural. (2017). Plan Estratégico de Ciencia Tecnología e Innovación del Sector Agropecuario Colombiano para la Agroindustria (PECTIA) y Sistema Nacional de Innovación Agropecuario (SNIA). Retrieved from http://www.colombiacompetitiva.gov.co/sncei/Documents/pectia-terminado.pdf
  44. Montero, J. M. S. (2011, December). Biotecnología: presente y futuro. In Anales de la Real Academia Nacional de Farmacia (Vol. 77, No. 4).Google Scholar
  45. Moreno, L. A., Andrade, G. I., & Ruíz-Contreras, L. F. (Eds.). (2016). Biodiversidad 2016. Estado y tendencias de la biodiversidad continental de Colombia. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt. Bogotá, DC, Colombia, p. 106. Retrieved from http://repository.humboldt.org.co//handle/20.500.11761/32962
  46. Moscoso, F., Estrada, F., Diaz, N., & Andrade, N. (2015). Obstacles to Progress in R&D Activities Caused by Institutional and Regulatory Frameworks: The Case of the Biotech Sector in Colombia. Research in World Economy, 6(4), 116.Google Scholar
  47. Paddon, C. J., & Keasling, J. D. (2014). Semi-synthetic Artemisinin: A Model for the Use of Synthetic Biology in Pharmaceutical Development. Nature Reviews Microbiology, 12(5), 355.Google Scholar
  48. Pan, P. G. (2006). Bioprospecting: Issues and Policy Considerations. Legislative Reference Bureau. Retrieved from http://www.angelfire.com/planet/big60/BioprospectingCommitsionReport.pdf
  49. Prip, C., & Rosendal, K. (2015). Access to Genetic Resources and Benefit-sharing from Their Use (ABS)-state. World, 9(2), 189–212.Google Scholar
  50. Purkayastha, J. (2016). Emerging Trends in Sustainable Bioprospecting of Bioresources. In Bioprospecting of Indigenous Bioresources of North-East India (pp. 3–19). Singapore: Springer.Google Scholar
  51. Pushpangadan, P., Ijinu, T. P., Dan, V. M., & George, V. (2015). Trends in Bioprospecting of Biodiversity in New Drug Design. Pleione, 9(2), 267–282.Google Scholar
  52. Pyka, A., & Prettner, K. (2018). Economic Growth, Development, and Innovation: The Transformation Towards a Knowledge-Based Bioeconomy. In Bioeconomy (pp. 329–340). Cham: Springer.Google Scholar
  53. Quezada, F. (2003). Biotechnology-based Opportunities for the Sustainable Use of Biodiversity Resources in the Andean Region: Recommendations and Strategic Guidelines. Retrieved from http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=153B57C474F06F5FC1C3DC9B7B0536B3?doi=10.1.1.488.170&rep=rep1&type=pdf
  54. Rangel, J. O. (2015). La biodiversidad de Colombia: significado y distribución regional. Palimpsestvs, Revista de la Academia Colombiana de Ciencias Exactas. Físicas y Naturales, 39(151), 176–200.Google Scholar
  55. Rodríguez, J. M., Camargo, J. C., Niño, J., Pineda, A. M., Arias, L. M., Echeverry, M. A., & Miranda, C. L. (2009). Valoración de la Biodiversidad en la Ecorregión del Eje Cafetero. Pereira: CIEBREG.Google Scholar
  56. Sahoo, N., & Bhattacharya, S. S. (2017). Intellectual Property Rights Protection in Plants: Scopes in Lychee Commercialization. In The Lychee Biotechnology (pp. 281–299). Singapore: Springer.Google Scholar
  57. Schaffartzik, A., Haberl, H., Kastner, T., Wiedenhofer, D., Eisenmenger, N., & Erb, K. H. (2015). Trading Land: A Review of Approaches to Accounting for Upstream Land Requirements of Traded Products. Journal of Industrial Ecology, 19(5), 703–714.Google Scholar
  58. Schuhmacher, A., Gassmann, O., & Hinder, M. (2016). Changing R&D Models in Research-based Pharmaceutical Companies. Journal of Translational Medicine, 14(1), 105.Google Scholar
  59. Schulze, U., Ringel, M., Panier, V., & Baedeker, M. (2017). Market Watch: Value of 2016 FDA Drug Approvals: Reversion to the Mean? Nature Reviews Drug Discovery, 16(2), 78–78.Google Scholar
  60. Sellés, A. J. N. (2014). Pharma R&D in Latin America. Pharmaceuticals Policy and Law, 16(3, 4), 267–275.Google Scholar
  61. Jr Silva, G., Silveira, J. M., Paranhos, J., Hasenclever, L., & Miranda, R. (2017). Innovation, Market Power and Biotechnology in the Brazilian Chemical Industry. Economics Bulletin, 37(2), 1210–1216.Google Scholar
  62. Singh, B. K. (2017). Creating New Business, Economic Growth and Regional Prosperity Through Microbiome-based Products in the Agriculture Industry. Microbial Biotechnology, 10(2), 224–227.Google Scholar
  63. Srivastava, S. K. (2016). Commercial Use of Biodiversity: Resolving the Access and Benefit Sharing Issues. New Delhi: SAGE Publications India.Google Scholar
  64. Superintendencia de Industria y Comercio-SIC, Centro de Información Tecnológica y Apoyo a la Gestión de la Propiedad Industrial – CIGEPI. (2015). Productos fitoterapéuticos. Retrieved from http://www.sic.gov.co/recursos_user/documentos/publicaciones/Productos_Fitoterapeuticos.pdf
  65. Suri, F. K., & Banerji, A. (2016). Super Generics—First Step of Indian Pharmaceutical Industry in the Innovative Space in US Market. Journal of Health Management, 18(1), 161–171.Google Scholar
  66. Torre, B. G., & Albericio, F. (2017). The Pharmaceutical Industry in 2016. An Analysis of FDA Drug Approvals from a Perspective of the Molecule Type. Molecules, 22(3), 368.Google Scholar
  67. Unkles, S. E., Valiante, V., Mattern, D. J., & Brakhage, A. A. (2014). Synthetic Biology Tools for Bioprospecting of Natural Products in Eukaryotes. Chemistry & Biology, 21(4), 502–508.Google Scholar
  68. Vargas-Hernández, J. G., Pallagst, K., & Hammer, P. (2017). Bio Economy’s Institutional and Policy Framework for the Sustainable Development of Nature’s Ecosystems. Atlantic Review of Economics, 2, 1–30.Google Scholar
  69. Villar, L., Salazar, N., Pérez, C., Orbegozo, C., & Mesa, C. A. (2015). Informe del sector farmacéutico colombiano-FEDESARROLLO-ANDI. Retrieved from http://www.repository.fedesarrollo.org.co/bitstream/handle/11445/2481/Repor_Julio_2015_Fedesarrollo_y_ANDI.pdf?sequence=3&isAllowed=y
  70. Vásquez Velásquez, J., Gómez Portilla, K., & Rodríguez Acosta, S. (2010). Regulación en el mercado farmacéutico colombiano. Revista de Ciencias Sociales (Ve), 16(2).Google Scholar
  71. Wyatt, T., & Brisman, A. (2017). The Role of Denial in the ‘Theft of Nature’: Comparing Biopiracy and Climate Change. Critical Criminology, 25(3), 325–341.Google Scholar
  72. Zanello, G., Fu, X., Mohnen, P., & Ventresca, M. (2016). The Creation and Diffusion of Innovation in Developing Countries: A Systematic Literature Review. Journal of Economic Surveys, 30(5), 884–912.Google Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Research Center of Bioprospecting and Biotechnology for Biodiversity Foundation (BIOLABB)BogotáColombia

Personalised recommendations