Traumatic Brain Injury: Models and Mechanisms of Traumatic Brain Injury

  • Veronica EliassonEmail author
  • Stylianos Koumlis


Biomechanics is a compound word derived from mechanics and biology. Mechanics is the area of science that is concerned with the behavior of physical bodies when subjected to forces or displacements. Biomechanics in particular focuses on the application of mechanics to living matter, at the organ, tissue, or cellular level. This is a very broad classification covering a wide area of topics of interest. In this chapter our focus is on the biomechanics of traumatic brain injury (TBI) as occurring in sports. Before proceeding further, it is appropriate to define TBI:


  1. Abney, T. M., Feng, Y., Pless, R., Okamoto, R. J., Genin, G. M., & Bayly, P. V. (2011). Principal component analysis of dynamic relative displacement fields estimated from MR images. PLoS ONE, 6(7), e22063. Scholar
  2. Alexander, M. P. (1995). Mild traumatic brain injury: Pathophysiology, natural history, and clinical management. Neurology, 45(7), 1253–1260. Scholar
  3. Bayly, P. V., Cohen, T. S., Leister, E. P., Ajo, D., Leuthardt, E. C., & Genin, G. M. (2005). Deformation of the human brain induced by mild acceleration. Journal of Neurotrauma, 22(8), 845–856.PubMedPubMedCentralCrossRefGoogle Scholar
  4. Benedict, J. V., & Harris, E. H. (1970). An analytical investigation of the cavitation hypothesis of brain damage. Journal of Basic Engineering, 92, 597–603.CrossRefGoogle Scholar
  5. Bernick, K. B., Prevost, T. P., Suresh, S., & Socrate, S. (2011). Biomechanics of single cortical neurons. Acta Biomaterialia, 7(3), 1210–1219. Scholar
  6. Bigler, E. D. (2013). Neuroimaging biomarkers in mild traumatic brain injury (mTBI). Neuropsychology Review, 23(3), 169–209. Scholar
  7. Bilston, L. E. (2011). Brain tissue mechanical properties. In Biomechanics of the brain. Berlin: Springer.Google Scholar
  8. Bloomfield, I. G., Johnston, I. H., & Bilston, L. E. (1998). Effects of proteins, blood cells and glucose on the viscosity of cerebrospinal fluid. Pediatric Neurosurgery, 28(5), 246–251.PubMedCrossRefGoogle Scholar
  9. Boruah, S., Henderson, K., Subit, D., & Salzar, R. S. (2013). Response of human skull bone to dynamic compressive loading. In Presented at the Proceedings of the IRCOBI Conference, vol. 13, p. 497.Google Scholar
  10. Boruah, S., Subit, D. L., Paskoff, G. R., Shender, B. S., Crandall, J. R., & Salzar, R. S. (2017). Influence of bone microstructure on the mechanical properties of skull cortical bone - A combined experimental and computational approach. Journal of the Mechanical Behavior of Biomedical Materials, 65(C), 688–704. Scholar
  11. Camarillo, D. B., Shull, P. B., Mattson, J., Shultz, R., & Garza, D. (2013). An instrumented mouthguard for measuring linear and angular head impact kinematics in American football. Annals of Biomedical Engineering, 41(9), 1939–1949. Scholar
  12. Cantu, R. C. (2007). Chronic traumatic encephalopathy in the national football league. Neurosurgery, 61(2), 223–225. Scholar
  13. Carter, R. (2014). The human brain book. London: Penguin.Google Scholar
  14. Cernak, I. (2005). Animal models of head trauma. NeuroRx, 2(3), 410–422.PubMedPubMedCentralCrossRefGoogle Scholar
  15. Chatelin, S., Constantinesco, A., & Willinger, R. (2010). Fifty years of brain tissue mechanical testing: From in vitro to in vivo investigations. Biorheology, 47(5), 255–276. Scholar
  16. Cheng, S., & Bilston, L. E. (2007). Unconfined compression of white matter. Journal of Biomechanics, 40(1), 117–124. Scholar
  17. Duma, S. M., Manoogian, S. J., Bussone, W. R., Brolinson, P. G., Goforth, M. W., Donnenwerth, J. J., et al. (2005). Analysis of real-time head accelerations in collegiate football players. Clinical Journal of Sport Medicine, 15(1), 3–8.PubMedCrossRefGoogle Scholar
  18. Engin, A. E. (1969). The axisymmetric response of a fluid-filled spherical shell to a local radial impulse—a model for head injury. Journal of Biomechanics, 2(3), 325–341.PubMedCrossRefGoogle Scholar
  19. Feng, Y., Abney, T. M., Okamoto, R. J., Pless, R. B., Genin, G. M., & Bayly, P. V. (2010). Relative brain displacement and deformation during constrained mild frontal head impact. Journal of the Royal Society Interface, 7(53), 1677–1688. Scholar
  20. Franceschini, G., Bigoni, D., Regitnig, P., & Holzapfel, G. A. (2006). Brain tissue deforms similarly to filled elastomers and follows consolidation theory. Journal of the Mechanics and Physics of Solids, 54(12), 2592–2620. Scholar
  21. Galford, J. E., & McElhaney, J. H. (1970). A viscoelastic study of scalp, brain, and dura. Journal of Biomechanics, 3(2), 211–221.PubMedCrossRefGoogle Scholar
  22. Gennarelli, T. A., Thibault, L. E., Adams, J. H., Graham, D. I., Thompson, C. J., & Marcincin, R. P. (1982). Diffuse axonal injury and traumatic coma in the primate. Annals of Neurology, 12(6), 564–574.PubMedCrossRefGoogle Scholar
  23. Goldsmith, W. (2001). The state of head injury biomechanics: Past, present, and future: Part 1. Critical Reviews in Biomedical Engineering, 29(5-6), 441–600.PubMedCrossRefGoogle Scholar
  24. Goldsmith, W., & Sackman, J. L. (1978). Response of a realistic human head-neck model to impact. Journal of Biomechanical Engineering, 100(1), 25–33.CrossRefGoogle Scholar
  25. Green, M. A., Bilston, L. E., & Sinkus, R. (2008). In vivo brain viscoelastic properties measured by magnetic resonance elastography. NMR in Biomedicine, 21(7), 755–764.PubMedCrossRefGoogle Scholar
  26. Haines, D. E., Harkey, H. L., & Al-Mefty, O. (1993). The “subdural” space: A new look at an outdated concept. Neurosurgery, 32(1), 111–120.CrossRefGoogle Scholar
  27. Hardy, W. N., Mason, M. J., Foster, C. D., & Shah, C. S. (2007). A study of the response of the human cadaver head to impact. Stapp Car Crash Journal, 51, 17–80.PubMedPubMedCentralGoogle Scholar
  28. Holbourn, A. (1943). Mechanics of head injuries. Lancet, 242(6267), 438–441.CrossRefGoogle Scholar
  29. Johnson, E. A. C., & Young, P. G. (2005). On the use of a patient-specific rapid-prototyped model to simulate the response of the human head to impact and comparison with analytical and finite element models. Journal of Biomechanics, 38(1), 39–45. Scholar
  30. Johnson, V. E., Stewart, W., & Smith, D. H. (2013). Axonal pathology in traumatic brain injury. Experimental Neurology, 246(C), 35–43. Scholar
  31. Kenner, V. H., & Goldsmith, W. (1972). Dynamic loading of a fluid-filled spherical shell. International Journal of Mechanical Sciences, 14(9), 557–568.CrossRefGoogle Scholar
  32. Kenner, V. H., & Goldsmith, W. (1973). Impact on a simple physical model of the head. Journal of Biomechanics, 6(1), 1–11.PubMedCrossRefGoogle Scholar
  33. King, A. I., Yang, K. H., Zhang, L., Hardy, W., & Viano, D. C. (2003). Is head injury caused by linear or angular acceleration. In IRCOBI Conference. pp. 1–12.Google Scholar
  34. King, D., Hume, P. A., Brughelli, M., & Gissane, C. (2015). Instrumented mouthguard acceleration analyses for head impacts in amateur rugby union players over a season of matches. The American Journal of Sports Medicine, 43(3), 614–624. Scholar
  35. Koumlis, et al. (2015). HAMr: A mechanical impactor for repeated dynamic loading of in - vitro neuronal networks. Experimental Mechanics, 55(8), 1441–1449.CrossRefGoogle Scholar
  36. Koumlis, et al. (2018). Glial model for traumatic brain injury: Network strain field and inflammation induced by repeated mechanical impacts in - vitro. Experimental Mechanics, 58, 125–135.CrossRefGoogle Scholar
  37. Kruse, S. A., Rose, G. H., Glaser, K. J., Manduca, A., Felmlee, J. P., Jack, C. R., Jr., & Ehman, R. L. (2008). Magnetic resonance elastography of the brain. NeuroImage, 39(1), 231–237. Scholar
  38. Labus, K. M., & Puttlitz, C. M. (2016). An anisotropic hyperelastic constitutive model of brain white matter in biaxial tensionand structural. Journal of the Mechanical Behavior of Biomedical Materials, 62(C), 195–208. Scholar
  39. Laker, S. R. (2011). Epidemiology of concussion and mild traumatic brain injury. PMRJ, 3(S2), S354–S358. Scholar
  40. Landkof, B., Goldsmith, W., & Sackman, J. L. (1976). Impact on a head-neck structure. Journal of Biomechanics, 9(3), 141–144.CrossRefGoogle Scholar
  41. Mazumder, M., Bunt, S., Mostayed, M., & Joldes, G. (2013). Mechanical properties of the brain–skull interface. Acta of Bioengineering and Biomechanics, 15(2), 3–11.Google Scholar
  42. McElhaney, J. H., Fogle, J. L., Melvin, J. W., & Haynes, R. R. (1970). Mechanical properties of cranial bone. Journal of Biomechanics, 3(5), 495–511.PubMedCrossRefGoogle Scholar
  43. Meaney, D. F., Morrison, B., & Dale Bass, C. (2014). The mechanics of traumatic brain injury: A review of what we know and what we need to know for reducing its societal burden. Journal of Biomechanical Engineering, 136(2), 021008. Scholar
  44. Menon, D. K., Schwab, K., Wright, D. W., & Maas, A. I. (2010). Position statement: definition of traumatic brain injury. Archives of Physical Medicine and Rehabilitation, 91(11), 1637–1640. Scholar
  45. Miller, K. (2014). Biomechanics of the brain. Berlin: Springer Science & Business Media.Google Scholar
  46. Miller, K., & Chinzei, K. (1997). Constitutive modelling of brain tissue: Experiment and theory. Journal of Biomechanics, 30(11), 1115–1121.PubMedCrossRefGoogle Scholar
  47. Miller, K., & Chinzei, K. (2002). Mechanical properties of brain tissue in tension. Journal of Biomechanics, 35(4), 483–490.PubMedCrossRefGoogle Scholar
  48. Morrison, B., Saatman, K. E., Meaney, D. F., & McIntosh, T. K. (1998). In vitro central nervous system models of mechanically induced trauma: A review. Journal of Neurotrauma, 15(11), 911–928.PubMedCrossRefGoogle Scholar
  49. Morrison, B., Elkin, B. S., Dollé, J.-P., & Yarmush, M. L. (2011). In vitro models of traumatic brain injury. Annual Review of Biomedical Engineering, 13(1), 91–126. Scholar
  50. Nahum, A. M., & Melvin, J. W. (2012). Accidental injury: Biomechanics and prevention. Berlin: Springer Science & Business Media.Google Scholar
  51. Noble, J. M., & Hesdorffer, D. C. (2013). Sport-related concussions: A review of epidemiology, challenges in diagnosis, and potential risk factors. Neuropsychology Review, 23(4), 273–284. Scholar
  52. Ommaya, A. K. (1968). Mechanical properties of tissues of the nervous system. Journal of Biomechanics, 1(2), 127–138.CrossRefGoogle Scholar
  53. Ommaya, A. K., & Hirsch, A. E. (1971). Tolerances for cerebral concussion from head impact and whiplash in primates. Journal of Biomechanics, 4(1), 13–21.PubMedCrossRefGoogle Scholar
  54. Oppenheimer, D. R. (1968). Microscopic lesions in the brain following head injury. Journal of Neurology, Neurosurgery, and Psychiatry, 31(4), 299.PubMedPubMedCentralCrossRefGoogle Scholar
  55. Pellman, E. J., Viano, D. C., Tucker, A. M., & Casson, I. R. (2003). Concussion in professional football: reconstruction of game impacts and injuries. Neurosurgery, 53(4), 799–814.PubMedCrossRefGoogle Scholar
  56. Pervin, F., & Chen, W. W. (2009). Dynamic mechanical response of bovine gray matter and white matter brain tissues under compression. Journal of Biomechanics, 42(6), 731–735. Scholar
  57. Prevost, T. P., Balakrishnan, A., Suresh, S., & Socrate, S. (2011a). Biomechanics of brain tissue. Acta Biomaterialia, 7(1), 83–95. Scholar
  58. Prevost, T. P., Jin, G., de Moya, M. A., Alam, H. B., Suresh, S., & Socrate, S. (2011b). Dynamic mechanical response of brain tissue in indentation in vivo, in situ and in vitro. Acta Biomaterialia, 7(12), 4090–4101. Scholar
  59. Rashid, B., Destrade, M., & Gilchrist, M. D. (2012). Mechanical characterization of brain tissue in compression at dynamic strain rates. Journal of the Mechanical Behavior of Biomedical Materials, 10(C), 23–38. Scholar
  60. Rashid, B., Destrade, M., & Gilchrist, M. D. (2014). Mechanical characterization of brain tissue in tension at dynamic strain rates. Journal of the Mechanical Behavior of Biomedical Materials, 33(c), 43–54. Scholar
  61. Robbins, D. H., & Wood, J. L. (1969). Determination of mechanical properties of the bones of the skull. Experimental Mechanics, 9, 236.CrossRefGoogle Scholar
  62. Roebuck-Spencer, T., & Cernich, A. (2014). Epidemiology and societal impact of traumatic brain injury. In Handbook on the neuropsychology of traumatic brain injury (pp. 3–23). New York: Springer.CrossRefGoogle Scholar
  63. Rowson, S., Brolinson, G., Goforth, M., Dietter, D., & Duma, S. (2009). Linear and angular head acceleration measurements in collegiate football. Journal of Biomechanical Engineering, 131(6), 061016. Scholar
  64. Russell, W., & Burch, R. L. (2009). The principles of humane experimental technique (Vol. 1959, p. 238). London: Methuen.Google Scholar
  65. Schmitt, K.-U., Niederer, P., & Walz, F. (2014). Trauma biomechanics: Introduction to accidental injury (pp. 1–252). Berlin: Springer Science & Business Media.CrossRefGoogle Scholar
  66. Shen, F. (2006). Modified Bilston nonlinear viscoelastic model for finite element head injury studies. Journal of Biomechanical Engineering, 128(5), 797. Scholar
  67. Strich, S. J. (1956). Diffuse degeneration of the cerebral white matter in severe dementia following head injury. Journal of Neurology, Neurosurgery, and Psychiatry, 19(3), 163–185.PubMedPubMedCentralCrossRefGoogle Scholar
  68. Strich, S. J. (1961). Shearing of nerve fibres as a cause of brain damage due to head injury - a pathological study of 20 cases. Lancet, 2(720), 443.CrossRefGoogle Scholar
  69. Sutton, M. A. (2008). Digital image correlation for shape and deformation measurements. In Springer handbook of experimental solid mechanics. New York: Springer.Google Scholar
  70. Tamura, A., Hayashi, S., Nagayama, K., & Matsumoto, T. (2008). Mechanical characterization of brain tissue in high-rate extension. Journal of Biomechanical Science and Engineering, 3(2), 263–274. Scholar
  71. Tamura, A., Hayashi, S., Watanabe, I., Nagayama, K., & Matsumoto, T. (2007). Mechanical characterization of brain tissue in high-rate compression. Journal of Biomechanical Science and Engineering, 2(3), 115–126. Scholar
  72. Thurman, D. J., Branche, C. M., & Sniezek, J. E. (1998). The epidemiology of sports-related traumatic brain injuries in the United States: Recent developments. The Journal of Head Trauma Rehabilitation, 13(2), 1–8.PubMedCrossRefGoogle Scholar
  73. Velardi, F., Fraternali, F., & Angelillo, M. (2005). Anisotropic constitutive equations and experimental tensile behavior of brain tissue. Biomechanics and Modeling in Mechanobiology, 5(1), 53–61. Scholar
  74. Wood, J. L. (1971). Dynamic response of human cranial bone. Journal of Biomechanics, 4(1), 1–12.CrossRefGoogle Scholar
  75. Xiong, Y., Mahmood, A., & Chopp, M. (2013). Animal models of traumatic brain injury. Nature Reviews Neuroscience, 14(2), 128–142. Scholar
  76. Yang, K. H., & King, A. I. (2011). Modeling of the brain for injury simulation and prevention. In Biomechanics of the Brain (pp. 91–110). New York: Springer.CrossRefGoogle Scholar
  77. Yoganandan, N., Nahum, A. M., & Melvin, J. W. (2014). Accidental injury: Biomechanics and prevention. Berlin: Springer Science & Business Media.Google Scholar
  78. Young, P. G. (2003). An analytical model to predict the response of fluid-filled shells to impact—a model for blunt head impacts. Journal of Sound and Vibration, 267(5), 1107–1126. Scholar
  79. Yudkin, J. S., Richter, B., & Gale, E. A. (2011). Intensified glucose control in type 2 diabetes—whose agenda? Lancet, 377(9773), 1220–1222. Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Structural EngineeringUniversity of California San DiegoLa JollaUSA
  2. 2.Department of Aerospace and Mechanical EngineeringUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations