Advertisement

Testing for Self-excitation in Financial Events: A Bayesian Approach

  • Ali Caner TürkmenEmail author
  • Ali Taylan Cemgil
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11054)

Abstract

Self-exciting temporal point processes are used to model a variety of financial event data including order flows, trades, and news. In this work, we take a Bayesian approach to inference and model comparison in self-exciting processes. We discuss strategies to compute marginal likelihood estimates for the univariate Hawkes process, and describe a Bayesian model comparison scheme. We demonstrate on currency, cryptocurrency and equity limit order book data that the test captures excitatory dynamics.

Notes

Acknowledgement

We gratefully acknowledge the support of Scientific and Technological Research Council of Turkey (TUBITAK), under research grant 116E580.

References

  1. 1.
    Bacry, E., Dayri, K., Muzy, J.F.: Non-parametric kernel estimation for symmetric Hawkes processes. Application to high frequency financial data. Eur. Phys. J. B 85(5), 157 (2012)CrossRefGoogle Scholar
  2. 2.
    Bacry, E., Mastromatteo, I., Muzy, J.F.: Hawkes processes in finance. Mark. Microstruct. Liq. 1(01), 1550005 (2015)CrossRefGoogle Scholar
  3. 3.
    Cont, R.: Statistical modeling of high-frequency financial data. IEEE Sig. Process. Mag. 28(5), 16–25 (2011)CrossRefGoogle Scholar
  4. 4.
    Cox, D.R., Isham, V.: Point Processes, vol. 12. CRC Press, Boca Raton (1980)zbMATHGoogle Scholar
  5. 5.
    Dachian, S., Kutoyants, Y.A.: Hypotheses testing: poisson versus self-exciting. Scand. J. Stat. 33(2), 391–408 (2006)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Daley, D.J., Vere-Jones, D.: An Introduction to the Theory of Point Processes: Volume I: Elementary Theory and Methods. PIA. Springer, New York (2003).  https://doi.org/10.1007/b97277CrossRefzbMATHGoogle Scholar
  7. 7.
    Hawkes, A.G.: Point spectra of some mutually exciting point processes. J. R. Stat. Soc. Ser. B (Methodol.) 33, 438–443 (1971)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Linderman, S., Adams, R.: Discovering latent network structure in point process data. In: International Conference on Machine Learning, pp. 1413–1421 (2014)Google Scholar
  9. 9.
    Mei, H., Eisner, J.M.: The neural Hawkes process: a neurally self-modulating multivariate point process. In: Advances in Neural Information Processing Systems, pp. 6757–6767 (2017)Google Scholar
  10. 10.
    Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press, Cambridge (2012)zbMATHGoogle Scholar
  11. 11.
    Neal, R.M.: Annealed importance sampling. Stat. Comput. 11(2), 125–139 (2001)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Rambaldi, M., Pennesi, P., Lillo, F.: Modeling FX market activity around macroeconomic news: a Hawkes process approach, vol. 67, p. 210. arxiv preprint. arXiv preprint arXiv:1405.6047 (2014)
  13. 13.
    Türkmen, A.C., Cemgil, A.T.: Modeling high-frequency price data with bounded-delay Hawkes processes. In: Corazza, M., Durbán, M., Grané, A., Perna, C., Sibillo, M. (eds.) Mathematical and Statistical Methods for Actuarial Sciences and Finance, pp. 507–511. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-89824-7_90CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Computer EngineeringBoğaziçi UniversityIstanbulTurkey

Personalised recommendations