Exploring Students Eating Habits Through Individual Profiling and Clustering Analysis

  • Michela NatilliEmail author
  • Anna Monreale
  • Riccardo Guidotti
  • Luca Pappalardo
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11054)


Individual well-being strongly depends on food habits, therefore it is important to educate the general population, and especially young people, to the importance of a healthy and balanced diet. To this end, understanding the real eating habits of people becomes fundamental for a better and more effective intervention to improve the students’ diet. In this paper we present two exploratory analyses based on centroid-based clustering that have the goal of understanding the food habits of university students. The first clustering analysis simply exploits the information about the students’ food consumption of specific food categories, while the second exploratory analysis includes the temporal dimension in order to capture the information about when the students consume specific foods. The second approach enables the study of the impact of the time of consumption on the choice of the food.


Food analytics Individual models Clustering analysis 



This work is part of the project Rasupea-Mensana funded by Regione Toscana on PRAF 2012–2015 funds as part of the “Nutrafood” project. Rasupea-Mensana is promoted by the University of Pisa and the Scuola Superiore Sant’Anna in collaboration with the Regional Agency for the Right to University Study of Tuscany (Azienda Regionale per il Diritto allo Studio Universitario Toscana - DSU) and Pharmanutra. This work is also partially supported by the EU H2020 Program under the funding scheme “INFRAIA-1-2014-2015: Research Infrastructures”, grant agreement 654024 “SoBigData” ( The authors thank the staff of DSU (as part of Rasupea) and of University of Pisa for providing data and support for data linkage.


  1. 1.
    The cultural dimension of food. Technical report, Barilla Center for Food Nutrition (2017)Google Scholar
  2. 2.
    DeVault, K.R., Castell, D.O.: Updated guidelines for the diagnosis and treatment of gastroesophageal reflux disease. Am. J. Gastroenterol. 100(1), 190 (2005)CrossRefGoogle Scholar
  3. 3.
    Eertmans, A., Baeyens, F., Van Den Bergh, O.: Food likes and their relative importance in human eating behavior: review and preliminary suggestions for health promotion. Health Educ. Res. 16(4), 443–456 (2001)CrossRefGoogle Scholar
  4. 4.
    Gabrielli, L., Furletti, B., Trasarti, R., Giannotti, F., Pedreschi, D.: City users’ classification with mobile phone data. In: 2015 IEEE International Conference on Big Data (Big Data), pp. 1007–1012. IEEE (2015)Google Scholar
  5. 5.
    Gillen, M.M., Markey, C.N., Markey, P.M.: An examination of dieting behaviors among adults: links with depression. Eat. Behav. 13(2), 88–93 (2012)CrossRefGoogle Scholar
  6. 6.
    Guidotti, R.: Personal data analytics: capturing human behavior to improve self-awareness and personal services through individual and collective knowledge (2017)Google Scholar
  7. 7.
    Guidotti, R., Coscia, M., Pedreschi, D., Pennacchioli, D.: Behavioral entropy and profitability in retail. In: IEEE International Conference on Data Science and Advanced Analytics (DSAA), pp. 1–10. IEEE (2015). 36678 2015Google Scholar
  8. 8.
    Guidotti, R., Gabrielli, L.: Recognizing residents and tourists with retail data using shopping profiles. In: Guidi, B., Ricci, L., Calafate, C., Gaggi, O., Marquez-Barja, J. (eds.) GOODTECHS 2017. LNICST, vol. 233, pp. 353–363. Springer, Cham (2018). Scholar
  9. 9.
    Guidotti, R., Gabrielli, L., Monreale, A., Pedreschi, D., Giannotti, F.: Discovering temporal regularities in retail customers’ shopping behavior. EPJ Data Sci. 7(1), 6 (2018)CrossRefGoogle Scholar
  10. 10.
    Guidotti, R., Monreale, A., Nanni, M., Giannotti, F., Pedreschi, D.: Clustering individual transactional data for masses of users. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2017, pp. 195–204. ACM, New York (2017)Google Scholar
  11. 11.
    Guidotti, R., Rossetti, G., Pappalardo, L., Giannotti, F., Pedreschi, D.: Market basket prediction using user-centric temporal annotated recurring sequences. In: 2017 IEEE International Conference on Data Mining (ICDM), pp. 895–900. IEEE (2017)Google Scholar
  12. 12.
    Hildebrandt, M.: Defining profiling: a new type of knowledge? In: Hildebrandt, M., Gutwirth, S. (eds.) Profiling the European Citizen, pp. 17–45. Springer, Dordrecht (2008). Scholar
  13. 13.
    Julier, A.P.: Eating Together: Food, Friendship, and Inequality. University of Illinois Press, Champaign (2013)CrossRefGoogle Scholar
  14. 14.
    Livingstone, M., et al.: Accuracy of weighed dietary records in studies of diet and health. BMJ 300(6726), 708–712 (1990)CrossRefGoogle Scholar
  15. 15.
    Lock, K., Pomerleau, J., Causer, L., Altmann, D.R., McKee, M.: The global burden of disease attributable to low consumption of fruit and vegetables: implications for the global strategy on diet. Bull. World Health Organ. 83(2), 100–108 (2005)Google Scholar
  16. 16.
    Maiorino, M.I., Bellastella, G., Giugliano, D., Esposito, K.: Can diet prevent diabetes? J. Diabetes Complicat. 31(1), 288–290 (2017)CrossRefGoogle Scholar
  17. 17.
    Martinucci, I., et al.: Gastroesophageal reflux symptoms among italian university students: epidemiology and dietary correlates using automatically recorded transactions. BMC Gastroenterol. 18(1), 116 (2018)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Ortega, R.M., Pérez-Rodrigo, C., López-Sobaler, A.M.: Dietary assessment methods: dietary records. Nutricion hospitalaria 31(3), 38–45 (2015)Google Scholar
  19. 19.
    Peat, C.M., et al.: Binge eating, body mass index, and gastrointestinal symptoms. J. Psychosom. Res. 75(5), 456–461 (2013)CrossRefGoogle Scholar
  20. 20.
    Pereira, M.A., et al.: Fast-food habits, weight gain, and insulin resistance (the CARDIA study): 15-year prospective analysis. Lancet 365(9453), 36–42 (2005)CrossRefGoogle Scholar
  21. 21.
    Phillips, D.L., Clancy, K.J.: Some effects of “social desirability” in survey studies. Am. J. Sociol. 77(5), 921–940 (1972)CrossRefGoogle Scholar
  22. 22.
    Rozin, P., Fischler, C., Imada, S., Sarubin, A., Wrzesniewski, A.: Attitudes to food and the role of food in life in the USA, Japan, Flemish Belgium and France: possible implications for the diet-health debate. Appetite 33(2), 163–180 (1999)CrossRefGoogle Scholar
  23. 23.
    Spence, J.C., Cutumisu, N., Edwards, J., Raine, K.D., Smoyer-Tomic, K.: Relation between local food environments and obesity among adults. BMC Public Health 9(1), 192 (2009)CrossRefGoogle Scholar
  24. 24.
    Story, M., Neumark-Sztainer, D., French, S.: Individual and environmental influences on adolescent eating behaviors. J. Acad. Nutr. Diet. 102(3), S40–S51 (2002)Google Scholar
  25. 25.
    Sudman, S., Bradburn, N.M.: Effects of time and memory factors on response in surveys. J. Am. Stat. Assoc. 68(344), 805–815 (1973)CrossRefGoogle Scholar
  26. 26.
    Tan, P.N., et al.: Introduction to Data Mining. Pearson Education India, Delhi (2006)Google Scholar
  27. 27.
    Trasarti, R., Guidotti, R., Monreale, A., Giannotti, F.: MyWay: location prediction via mobility profiling. Inf. Syst. 64, 350–367 (2017)CrossRefGoogle Scholar
  28. 28.
    Vereecken, C.A., De Henauw, S., Maes, L.: Adolescents’ food habits: results of the health behaviour in school-aged children survey. Br. J. Nutr. 94(3), 423–431 (2005)CrossRefGoogle Scholar
  29. 29.
    Zhao, L., et al.: Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes. Science 359(6380), 1151–1156 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Michela Natilli
    • 1
    Email author
  • Anna Monreale
    • 1
  • Riccardo Guidotti
    • 1
    • 2
  • Luca Pappalardo
    • 2
  1. 1.University of PisaPisaItaly
  2. 2.KDDLabISTI-CNRPisaItaly

Personalised recommendations