Advertisement

Privacy Preserving Client/Vertical-Servers Classification

  • Derian Boer
  • Zahra AhmadiEmail author
  • Stefan Kramer
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11054)

Abstract

We present a novel client/vertical-servers architecture for hybrid multi-party classification problem. The model consists of clients whose attributes are distributed on multiple servers and remain secret during training and testing. Our solution builds privacy-preserving random forests and completes them with a special private set intersection protocol that provides a central commodity server with anonymous conditional statistics. Subsequently, the private set intersection protocol can be used to privately classify the queries of new clients using the commodity server’s statistics. The proviso is that the commodity server must not collude with other parties. In cases where this restriction is acceptable, it allows an effective method without computationally expensive public key operations, while it is still secure and avoids precision losses. We report the runtime results on some real-world datasets, and discuss different security aspects and finally give an outlook on further improvements.

Keywords

Vertically partitioned data Private evaluation Secure multi-party computation Privacy preserving data mining Random forest 

References

  1. 1.
    Aggarwal, C.C., Yu, P.S.: A general survey of privacy-preserving data mining models and algorithms. In: Aggarwal, C.C., Yu, P.S. (eds.) Privacy-Preserving Data Mining, pp. 11–52. Springer, Boston (2008).  https://doi.org/10.1007/978-0-387-70992-5_2CrossRefGoogle Scholar
  2. 2.
    Blockeel, H., Raedt, L.D.: Top-down induction of first-order logical decision trees. Artif. Intell. 101(1), 285–297 (1998)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bojarski, M., Choromanska, A., Choromanski, K., Lecun, Y.: Differentially- and non-differentially-private random decision trees, October 2014Google Scholar
  4. 4.
    Bost, R., Popa, R.A., Tu, S., Goldwasser, S.: Machine learning classification over encrypted data. Cryptology ePrint Archive, Report 2014/331 (2014)Google Scholar
  5. 5.
    Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)CrossRefGoogle Scholar
  6. 6.
    Brickell, J., Porter, D.E., Shmatikov, V., Witchel, E.: Privacy-preserving remote diagnostics. In: Proceedings of the 14th ACM Conference on Computer and Communications Security (CCS), pp. 498–507 (2007)Google Scholar
  7. 7.
    Bundesamt für Sicherheit in der Informationstechnik: Kryptographische verfahren: Empfehlungen und schluessellaengen, May 2018. https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/TechnischeRichtlinien/TR02102/BSI-TR-02102.pdf?__blob=publicationFile&v=8
  8. 8.
    Damgård, I., Jurik, M., Nielsen, J.: A generalization of paillier’s public-key system with applications to electronic voting. Int. J. Inf. Secur. 9, 371–385 (2003)CrossRefGoogle Scholar
  9. 9.
    Drummond, C., Holte, R.C.: Exploiting the cost (in)sensitivity of decision tree splitting criteria. In: International Conference on Machine Learning (ICML), pp. 239–246 (2000)Google Scholar
  10. 10.
    Du, W., Zhan, Z.: Building decision tree classifier on private data. In: Proceedings of the IEEE International Conference on Privacy, Security and Data Mining (CRPIT)-Volume 14, pp. 1–8 (2002)Google Scholar
  11. 11.
    Emekci, F., Sahin, O., Agrawal, D., Abbadi, A.E.: Privacy preserving decision tree learning over multiple parties. Data Knowl. Eng. 63(2), 348–361 (2007)CrossRefGoogle Scholar
  12. 12.
    Friedman, A., Schuster, A.: Data mining with differential privacy. In: Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), pp. 493–502 (2010)Google Scholar
  13. 13.
    Wu, D.J., Feng, T., Naehrig, M., Lauter, K.: Privately evaluating decision trees and random forests. Proc. Priv. Enhancing Technol. 2016, 335–355 (2016)CrossRefGoogle Scholar
  14. 14.
    Jagannathan, G., Pillaipakkamnatt, K., Wright, R.N.: A practical differentially private random decision tree classifier. In: IEEE International Conference on Data Mining Workshops, pp. 114–121, December 2009Google Scholar
  15. 15.
    Kaghazgaran, P., Takabi, H.: Differentially private decision tree learning from distributed data, May 2015Google Scholar
  16. 16.
    Kolesnikov, V., Kumaresan, R., Rosulek, M., Trieu, N.: Efficient batched oblivious PRF with applications to private set intersection. In: Proceedings of the ACM SIG SAC Conference on Computer and Communications Security (CCS), pp. 818–829 (2016)Google Scholar
  17. 17.
    Kolesnikov, V., Matania, N., Pinkas, B., Rosulek, M., Trieu, N.: Practical multi-party private set intersection from symmetric-key techniques. In: Proceedings of the ACM SIG SAC Conference on Computer and Communications Security (CCS), pp. 1257–1272 (2017)Google Scholar
  18. 18.
    Lindell, P.: Privacy preserving data mining. J. Cryptol. 15(3), 177–206 (2002)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Liu, X., Li, Q., Li, T., Chen, D.: Differentially private classification with decision tree ensemble. Appl. Soft Comput. 62, 807–816 (2018)CrossRefGoogle Scholar
  20. 20.
    Ma, Q., Deng, P.: Secure multi-party protocols for privacy preserving data mining. In: Li, Y., Huynh, D.T., Das, S.K., Du, D.-Z. (eds.) WASA 2008. LNCS, vol. 5258, pp. 526–537. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-88582-5_49CrossRefGoogle Scholar
  21. 21.
    Quinlan, J.: Induction of decision trees. Mach. Learn. 1(1), 81–106 (1986)Google Scholar
  22. 22.
    Sravya, C.L., Lakshmi, G.R.: Privacy-preserving data mining with random decision tree framework. IOSR J. Comput. Eng. 19, 43–49 (2017)Google Scholar
  23. 23.
    Suthampan, E., Maneewongvatana, S.: Privacy preserving decision tree in multi party environment. In: Lee, G.G., Yamada, A., Meng, H., Myaeng, S.H. (eds.) AIRS 2005. LNCS, vol. 3689, pp. 727–732. Springer, Heidelberg (2005).  https://doi.org/10.1007/11562382_75CrossRefGoogle Scholar
  24. 24.
    Tai, R.K.H., Ma, J.P.K., Zhao, Y., Chow, S.S.M.: Privacy-preserving decision trees evaluation via linear functions. In: Foley, S.N., Gollmann, D., Snekkenes, E. (eds.) ESORICS 2017. LNCS, vol. 10493, pp. 494–512. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-66399-9_27CrossRefGoogle Scholar
  25. 25.
    Teng, Z., Du, W.: A hybrid multi-group privacy-preserving approach for building decision trees. In: Zhou, Z.-H., Li, H., Yang, Q. (eds.) PAKDD 2007. LNCS (LNAI), vol. 4426, pp. 296–307. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-71701-0_30CrossRefGoogle Scholar
  26. 26.
    Vaidya, J., Clifton, C.: Privacy-preserving decision trees over vertically partitioned data. In: Jajodia, S., Wijesekera, D. (eds.) DBSec 2005. LNCS, vol. 3654, pp. 139–152. Springer, Heidelberg (2005).  https://doi.org/10.1007/11535706_11CrossRefzbMATHGoogle Scholar
  27. 27.
    Zhan, J.Z., Chang, L.W., Matwin, S.: Privacy-preserving multi-party decision tree induction. In: Farkas, C., Samarati, P. (eds.) DBSec 2004. IIFIP, vol. 144, pp. 341–355. Springer, Boston, MA (2004).  https://doi.org/10.1007/1-4020-8128-6_23CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institut für InformatikJohannes Gutenberg-UniversitätMainzGermany

Personalised recommendations