Advertisement

Dry-Friction Damping in Vibrating Systems, Theory and Application to the Bladed Disc Assembly

  • Ludek PesekEmail author
  • Ladislav Pust
  • Pavel Snabl
  • Vitezslav Bula
  • Michal Hajzman
  • Miroslav Byrtus
Chapter
Part of the Mechanisms and Machine Science book series (Mechan. Machine Science, volume 69)

Abstract

The chapter deals with a dry friction damping in the dynamics of model blade systems. The main emphasis is to the solution of damping effects of dry friction contacts in tie-bosses and shrouds. Friction is considered herein from phenomenological view. The variety of modified dry-friction models and results of their equivalent linearization are presented at the beginning. Then numerical models, i.e. discrete analytical, reduced and full finite element, used in our research of non-linear dynamic behavior of the blade cascades and bladed wheel with dry friction contacts are discussed. Dynamics states, such as resonant vibration, free attenuation, self-excitation, are considered. The detailed dynamic analysis of non-linear behavior of these systems due to dry-friction contacts is presented for discrete analytical model with the stick-slip friction contact. Furthermore, the solution of the blade bundle dynamics with the tie-boss coupling by the 3D FE model with surface to surface contacts is described. Because of the rotary periodicity, the bladed wheels bring special resonant vibration mode, i.e. travelling wave mode, in dependence on a type of wheel excitation, the dynamic responses of the wheel to nozzle excitation and self-excitation are studied, too. For validation purposes, we describe the experiments and their results on blade bundles with two types of dry friction coupling. The comparisons with the numerical results show that in spite of simplifications in the modelling of the dry-friction contacts, the used numerical models can deliver very useful information about additional stiffness, damping and stabilization effect.

Notes

Acknowledgements

This work was supported by the research project of the Czech Science Foundation No. 16-04546S “Aero-elastic couplings and dynamic behavior of rotational periodic bodies”. The HPC calculations was supported by The Czech Ministry of Education, Youth and Sports from the Large Infrastructures for Research, Experimental Development and Innovations project “IT4 Innovations National Supercomputing Center—LM2015070”.

References

  1. 1.
    Awrejcewicz, J., Pyr’yev, Y.: Nonsmooth Dynamics of Contacting Thermoelastic Bodies. Springer, Berlin (2009)Google Scholar
  2. 2.
    Bachschmid, N., Bistolfi, S., Ferrante, M., Pennacchi, P., Pesatori, E., Sanvito, M.: An investigation on the dynamic behaviour of blades coupled by shroud contacts. In: Proceedings of SIRM 2011, Darmstadt, Germany (2011)Google Scholar
  3. 3.
    Bachschmid, N., Pennacchi, P., Lurati, M.: Combining mistuning and snubbing in bladed disks of turbomachinery. In: Proceedings of ISMA 2008, vol. 1–8, pp. 1009–1022, KU Leuven (2008)Google Scholar
  4. 4.
    Bachschmid, N., Bistolfi, S., Ferrante, M., Pennacchi, P.: An investigation on the dynamic behavior of blades coupled by shroud contacts. In: Proceedings of SIRM 2011, pp. 1–10, Darmstadt, Germany (2011)Google Scholar
  5. 5.
    Barboteu, M., Danan, D.: Analysis of a dynamic viscoelastic contact problem with normal compliance, normal damped response, and nonmonotone slip rate dependent friction. Adv. Math. Phys. (2016). Article Number: 1562509.  https://doi.org/10.1155/2016/1562509
  6. 6.
    Bogoljubov, N.N., Mitropolski, J.A.: Asymptotic Methods in Theory of Nonlinear Oscillations. GITTL, Moscow (1955). (in Russia)Google Scholar
  7. 7.
    Botto, D., Zucca, S., Pavone, S., Gola, M.M.: Parametric study of the kinematic behaviour of the underplatform damper and correlation with experimental data. In: Proceedings of ISMA 2008, vol. 1–8, pp. 1039–1053, KU LeuvenGoogle Scholar
  8. 8.
    Brepta, R., Půst, L., Turek, F.: Mechanical oscillations, TP 71. Sobotales, Prague (1994). (in Czech)Google Scholar
  9. 9.
    Chen, J.J., Zang, C.P., Zhou, B.A., Petrov, E.P.: Analysis of micro-slip properties for models of bladed disc friction joints. In: Proceedings of the ASME Turbo Expo, vol. 7B (2017). Article Number: V07BT35A021Google Scholar
  10. 10.
    Dinca, F., Theodosin, C.: Nonlinear and Random Vibrations. Academic press, Bucuresti (1973)Google Scholar
  11. 11.
    Drozdowski, R., Volker, L., Hafele, D., Vogt D.M.: Experimental and numerical investigation of the nonlinear vibrational behavior of steam turbine last stage blades with friction bolt damping elements. In: Proceedings of the ASME Turbo Expo 2015, vol. 8, Canada (2015)Google Scholar
  12. 12.
    Ferri, A.A., Dowell, E.H.: Frequency domain solutions to multi-degree-of-freedom, dry friction damped systems. J. Sound Vib. 124(2), 207–224 (1998). ISSN 0022460XGoogle Scholar
  13. 13.
    Francavilla, A., Zienkiewicz, O.C.: A note on numerical computation of elastic contact problems. Int. J. Numer. Methods Eng. 9, 913–924 (1975)CrossRefGoogle Scholar
  14. 14.
    Gola, M.M., Liu, T.: A direct experimental–numerical method for investigations of a laboratory under-platform damper behavior. Int. J. Solids 51, 4245–4259 (2014). ISSN 00207683.  https://doi.org/10.1016/j.ijsolstr.2014.08.011
  15. 15.
    Gu, W., Xu, Z., Liu, Y.: A method to predict the non-linear vibratory response of bladed disc system with shrouded dampers. In: Proceedings of the Institution of Mechanical Engineers Part C-Journal of Mechanical Engineering Science, vol. 226, pp 1620–1632 (2012).  https://doi.org/10.1177/0954406211424671
  16. 16.
    Guran, A., Pfeiffer, F., Popp, K.: Dynamics with Friction, Modeling, Analysis and Experiments, Part II, Singapore, World Scientific, eBook (2001). ISBN 9789810229542Google Scholar
  17. 17.
    Hertz, H.: Über die Berührung fester elastischer Körper (On the contact of elastic solids). J. reine und angewandte Mathematik 92, 156–171 (1882)Google Scholar
  18. 18.
    Hughes, T.J.R., Taylor, R.L., Sackman, J.L., Curnier, A., Kanoknukulchai, W.: A finite element method for a class of contact-impact problems. Comput. Methods Appl. Mech. Eng. 8, 249–276 (1976)CrossRefGoogle Scholar
  19. 19.
    Johnson, K.L.: Contact Mechanics. Cambridge University Press, UK (1985). ISBN 0-521-34796-3Google Scholar
  20. 20.
    Krylov, N.M., Bogoljubov, N.N.: Introduction in Nonlinear Mexanics. Kiew, Iz-AN-USSR (1937) (in Russia)Google Scholar
  21. 21.
    Lacarbonara, W., Arvin, H., Bakhtiari-Nejad, F.: A geometrically exact approach to the overall dynamics of elastic rotating blades-part I: linear modal properties. J. Nonlienear Dyn. 70(1), 659–675 (2012)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Larin, O.O.: Forced vibrations of bladings with the random technological mistuning. In: Proceedings of the ASME Turbo Expo 2010, vol. 6, pp. 667–672 (2010)Google Scholar
  23. 23.
    Magnus, K., Popp, K.: Schwingungen. Teubner Studienbücher Mechanik, 5 Auflage, Stuttgart (1997)Google Scholar
  24. 24.
    Minorski, N.: Nonlinear oscillations. Princeton, D. van Nostrand Comp. (1962)Google Scholar
  25. 25.
    Muszynska, A., Jones, D.I.G.: On tuned bladed disk dynamics: some aspects of friction related mistuning. J. Sound Vib. 86(1), 107–128 (1983)CrossRefGoogle Scholar
  26. 26.
    Muszynska, A., Jones, D.I.G.: Bladed disk dynamics investigated by a discrete model: effects of traveling wave excitation, friction and mistuning. In: Proceedings of the Machine Vibration Monitoring and Analysis Meeting, Oak Brook, Illinois (1982)Google Scholar
  27. 27.
    Muszynska, A., Jones, D.I.G.: A parametric study of dynamic response of a discrete model of turbomachinery bladed disk. ASME J. Vib. Acoust. Stress Reliab. Des. 105, 434–443 (1983)Google Scholar
  28. 28.
    Nacivet, S., Pierre, C., Thouverez, F., Jezequel, L.: A dynamic Lagrangian frequency–time method for the vibration of dry-friction-damped systems. J. Sound Vib. 265(1), pp. 201–219 (2003). ISSN 0022460X.  https://doi.org/10.1016/s0022-460x(02)01447-5
  29. 29.
    Pennacchi, P., Chatterton, S., Bachschmid, N., Pesatori, E., Turozzi, G.: A model to study the reduction of turbine blade vibration using the snubbing mechanism. Mech. Syst. Signal Process. 25(4), 1260–1275 (2011)CrossRefGoogle Scholar
  30. 30.
    Pesaresi, L., Salles, L., Jones, A., Green, J.S., Schwingshackl, C.W.: Modelling the nonlinear behaviour of an underplatform damper test rig for turbine applications. Mech. Syst. Signal Process. 85, 662–679 (2017).  https://doi.org/10.1016/j.ymssp.2016.09.007CrossRefGoogle Scholar
  31. 31.
    Pešek, L., Hajžman, M., Půst, L., Zeman, V., Byrtus, M., Brůha, J.: Experimental and numerical investigation of friction element dissipative effects in blade shrouding. J. Nonlinear Dyn. 79(3), 1711–1726 (2015)CrossRefGoogle Scholar
  32. 32.
    Pešek, L., Půst, L.: Mathematical model of a blade couple connected by damping element. In: Proceedings of 8th EURODYN2011, pp. 2006–2011, KU Leuven, Belgium (2011)Google Scholar
  33. 33.
    Pešek, L., Půst, L.: Blade couple connected by damping element with dry friction contacts. J. Theor. Appl. Mech. 52(3), 815–826 (2014)Google Scholar
  34. 34.
    Pešek, L., Půst, L., Bula, V., Cibulka, J.: Investigation of dry friction effect of shroud damping wire on model test bladed wheel. In: Proceedings of ASME IDETC/CIE 2013, Portland, USA, pages 7 (2013). Article number DETC2013-12851Google Scholar
  35. 35.
    Pešek, L., Půst, L., Bula, V., Cibulka, J.: Numerical analysis of dry friction damping effect of tie-boss couplings on three blade bundle. In: Proceedings of ASME IDETC/CIE 2017, Cleveland, USA, pages 7 (2017)Google Scholar
  36. 36.
    Pešek, L., Půst, L., Šulc, P., Šnabl, P., Bula, V.: Stiffening effect and dry-fiction damping of bladed wheel model with tie-boss couplings. In: Springer book Mechanisms and Machine Science, 62, pp. 148–162 (2019). https://doi.org/10.1007/978-3-319-99270-9_11
  37. 37.
    Pešek, L., Půst, L., Vaněk, F., Veselý, J., Cibulka, J.: Dynamics of model bladed disc with friction elements for vibration suppression. In: Proceedings of 8th IFTOMM Rotordynamics, pp. 332–339 (2010)Google Scholar
  38. 38.
    Pešek, L., Půst, L., Vaněk, F., Bula, V., Cibulka, J.: Inter-slip damping of twisted blades in opposed bundles under rotation. In: Proceedings of 10th VIRM, Institution of Mechanical Engineers, London, UK, Woodhead Publishing, pages 10 (2012)Google Scholar
  39. 39.
    Petrov, E.P.: Method for direct parametric analysis of non-linear forced response of bladed disks with friction contact interfaces. ASME J. Turbomach. 126, 654–662 (2004)CrossRefGoogle Scholar
  40. 40.
    Petrov, E.P.: Method for sensitivity analysis of resonance forced response of bladed disks with nonlinear contact interfaces. J. Eng. Gas Turbines Power Trans. ASME 131(2) (2009).  https://doi.org/10.1115/1.2969094. Article Number 022510
  41. 41.
    Petrov, E.P., Ewins, D.J.: State-of-the-art dynamic analysis for non-linear gas turbine structures. In: Proceedings of the Institution of Mechanical Engineers Part G-Journal of Aerospace Engineering, vol. 218, no. G3, pp. 199–211 (2004).  https://doi.org/10.1243/0954410041872906
  42. 42.
    Petrov, E.P., Ewins, D.J.: Effects of damping and varying contact area at blade-disk joints in forced response analysis of bladed disk assemblies. J. Turbomach. Trans. ASME 128(2), 403–410 (2006).  https://doi.org/10.1115/1.2181998
  43. 43.
    Petrov, E.P., Ewins, D.J.: Advanced modelling of underplatform friction dampers for analysis of bladed disc vibration. In: Proceedings of the ASME TURBO EXPO 2006, vol. 5, pp. 769–778 (2006)Google Scholar
  44. 44.
    Pierre, C., Ferri, A.A., Dowell, E.H.: Multi-harmonic analysis of dry friction damped systems using an incremental harmonic-balance method. J. Appl. Mech. Trans. ASME 52(4), 958–964 (1985).  https://doi.org/10.1115/1.3169175CrossRefzbMATHGoogle Scholar
  45. 45.
    Prasad, C.S., Pešek, L.: Analysis of classical flutter in steam turbine blades using reduced order aeroelastic model. In: MATEC Web of Conferences, 211 (2018). https://doi.org/10.1051/matecconf/201821115001. Article number 15001
  46. 46.
    Půst, L., Tondl, A.: Introduction into theory of nonlinear and quasiharmonic vibrations of mechanical systems. NCSAV, Prague (1956) (in Czech)Google Scholar
  47. 47.
    Půst, L., Pešek, L., Radolfova, A.: Various types of dry friction characteristics for vibration damping. Eng. Mech. 18(3), 203–224 (2011)Google Scholar
  48. 48.
    Půst, L., Pešek, L.: Running flutter waves in blades cascades. In: Proceedings of the Engineering Mechanics 2017, Svratka, Czech Republic (2017)Google Scholar
  49. 49.
    Půst, L., Pešek, L.: Blades force vibration under aero-elastic excitation modeled by Van der Pol. Int. J. Bifurc. Chaos 27(11), (12 pages) (2017)Google Scholar
  50. 50.
    Rao, J.S.: Turbomachine Blade Vibration. Wiley Eastern Limited, New Delhi (1991)Google Scholar
  51. 51.
    Rivin, E.I.: Stiffness and Damping in Mechanical Design. Marcel Dekker, New York (1989)Google Scholar
  52. 52.
    Rizvi, A., Smith, C.W., Rajasekaran, R., Evans, K.E.: Dynamics of dry friction damping in gas turbines: literature survey. J. Vib. Control 22(1), 296–305 (2016).  https://doi.org/10.1177/1077546313513051CrossRefGoogle Scholar
  53. 53.
    Sanliturk, K.Y., Imregun, M., Ewins, D.J.: Harmonic balance vibration analysis of turbine blades with friction dampers. J. Vib. Acoust. 119(1), 96–103 (2014).  https://doi.org/10.1115/1.2889693CrossRefGoogle Scholar
  54. 54.
    Santhosh, B., Narayanan, S., Padmanabhan, A.C.: Nonlinear dynamics of shrouded turbine blade system with impact and friction. Appl. Mech. Mater. 706, 81–92 (2014). ISSN 16609336. http://dx.doi.org/10.4028/www.scientific.net/AMM.706.81
  55. 55.
    Sextro, W.: Dynamical Contact Problems with Friction. Springer, Berlin (2007)CrossRefGoogle Scholar
  56. 56.
    Simo, J.C., Laursen, T.A.: An augmented lagrangian treatment of contact problems involving friction. Comput. Struct. 42(1), 97–116 (1992)MathSciNetCrossRefGoogle Scholar
  57. 57.
    Suss, D., Jerschl, M., Willner, K.: Adaptive harmonic balance analysis of dry friction damped systems. J. Nonlinear Dyn. 1. 34TH IMAC Book Series: Conference Proceedings of the Society for Experimental Mechanics Series, pp. 405–414 (2016).  https://doi.org/10.1007/978-3-319-29739-2_36
  58. 58.
    Voldřich, J., Lazar J., Polach P., Morávka Š.: Finding the stiffnesses of interface contact elements for the computational model of steam turbine blading. In: Proceedings of ASME IDETC/CIE 2017, Cleveland, USA, pages 12 (2017)Google Scholar
  59. 59.
    Wiercigroch, M., de Kraker, B.: Applied Nonlinear Dynamics and Chaos in Mechanical Systems with Discontinuities, World Scientific Series, vol. 28, London (2000)Google Scholar
  60. 60.
    Wriggers, P., Van Vu, T., Stein, E.: Finite element formulation of large deformation impact contact problems with friction. Comput. Struct. 37, 319–331 (1990)CrossRefGoogle Scholar
  61. 61.
    Yamashita, Y., Shiohata, K., Kudo, T., Yoda, H.: Vibration characteristics of a continuous cover blade structure with friction contact surfaces of a steam turbine. In: Proceedings of 10th VIRM, pp. 323–332, London, UK (2012)Google Scholar
  62. 62.
    Zeman, V., Byrtus, M., Hajžman, M.: Harmonic forced vibration of two rotating blades with friction damping. Eng. Mech. 17(3/4), 187–200 (2010)Google Scholar
  63. 63.
    Zmitrowicz, A.: A vibration analysis of a turbine blade system damped by dry friction forces. Int. J. Mech. Sci. 23(12), 741–761 (1981).  https://doi.org/10.1016/0020-7403(81)90012-6CrossRefzbMATHGoogle Scholar
  64. 64.
    Zucca, S., Firrone, C.M., Muzio, A., Gola, M.: Numerical assessment of friction damping at turbine blade root joints by simultaneous calculation of the static and dynamic contact loads. J. Nonlinear Dyn. 67(3), 1943–1955 (2012). ISSN 0924-090X. http://dx.doi.org/10.1007/s11071-011-0119-y
  65. 65.
    Zucca, S., Firrone, C.M.: Nonlinear dynamics of mechanical systems with friction contacts: coupled static and dynamic multi-harmonic balance method and multiple solutions. J. Sound Vib. 333(3), 916–926 (2014).  https://doi.org/10.1016/j.jsv.2013.09.032

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Ludek Pesek
    • 1
    Email author
  • Ladislav Pust
    • 1
  • Pavel Snabl
    • 1
  • Vitezslav Bula
    • 1
  • Michal Hajzman
    • 2
  • Miroslav Byrtus
    • 2
  1. 1.Institute of Thermomechanics AS CR, v.v.iPragueCzech Republic
  2. 2.University of West BohemiaPilsenCzech Republic

Personalised recommendations