Advertisement

Introduction

  • Martin Jähnert
Chapter
Part of the Archimedes book series (ARIM, volume 56)

Abstract

In the summer of 1923, Niels Bohr gave a lecture at Harvard University on the quantum theory of the atom. He had done so many times during the 1920s in Germany, Britain, the Netherlands, and now also in the U.S. For almost 300 listeners in the audience, Bohr ’s presentation was anything but an exposition of well-known ideas. At least the professor for theoretical physics at Harvard, Edwin Kemble , thought so, as he would give another talk “to restate Bohr a little more slowly and simply” shortly after Bohr had left. In the very first sentence of his talking notes, Kemble formulated the central theme of his talk and explained: “the correspondence principle is the important tool.”

References

  1. Assmus, Alexi J. 1990. Molecular Structure and the Genesis of the American Quantum Physics Community, 1916–1926. Ph.D. thesis, Harvard University, Cambridge, MA.Google Scholar
  2. Assmus, Alexi J. 1992a. The Americanization of Molecular Physics. Historical Studies in the Physical and Biological Sciences 23: 1–34.CrossRefGoogle Scholar
  3. Assmus, Alexi J. 1992b. The Molecular Tradition in Early Quantum Theory. Historical Studies in the Physical and Biological Sciences 22: 209–231.CrossRefGoogle Scholar
  4. Bohr, Niels. 1918a. On the Quantum Theory of Line Spectra, Part I: On the General Theory. Det Kongelige Danske Videnskabernes Selskab. Skrifter. Naturvidenskabelig og Matematisk Afdeling 4: 1–36.Google Scholar
  5. Bohr, Niels. 1923b. Über die Anwendung der Quantentheorie auf den Atombau, I. Die Grundpostulate der Quantentheorie. Zeitschrift für Physik 13: 117–165.ADSCrossRefGoogle Scholar
  6. Bohr, Niels. 1976. Bohr’s Collected Works: The Correspondence Principle (1918–1923), vol. 3. Amsterdam: North-Holland.Google Scholar
  7. Bohr, Niels. 1977. Bohr’s Collected Works: The Periodic System (1920–1923), vol. 4. Amsterdam: North-Holland.Google Scholar
  8. Bohr, Niels. 1981. Bohr’s Collected Works: Work on Atomic Physics: (1912–1917), vol. 2. Amsterdam: North-Holland.Google Scholar
  9. Born, Max, Hedwig Born, and Albert Einstein. 1969. Briefwechsel 1916–1955. Munich: Nymphenburger Verlagshandlung.Google Scholar
  10. Cassidy, David C. 1976. Werner Heisenberg and the Crisis in Quantum Theory, 1920–1925. Ph.D. thesis, Purdue University.Google Scholar
  11. Cassidy, David C. 1979. Heisenberg’s First Core Model of the Atom. Historical Studies in the Physical Sciences 10: 187–224.CrossRefGoogle Scholar
  12. Darrigol, Olivier. 1992. From “C”-Numbers to “Q”-Numbers: The Classical Analogy in the History of Quantum Theory. Berkeley: University of California Press.Google Scholar
  13. Darrigol, Olivier. 2010. Quantum Theory and Atomic Structure, 1900–1927. In The Modern Physical and Mathematical Sciences. The Cambridge History of Science, ed. Marie Joe Nye, vol. 5, 331–349. Cambridge: Cambridge University Press.Google Scholar
  14. Duncan, Anthony, and Michel Janssen. 2007a. On the Verge of Umdeutung in Minnesota: Van Vleck and the Correspondence Principle. Part I. Archive for History of Exact Sciences 61: 553–624.MathSciNetCrossRefGoogle Scholar
  15. Duncan, Anthony, and Michel Janssen. 2007b. On the Verge of Umdeutung in Minnesota: Van Vleck and the Correspondence Principle. Part II. Archive for History of Exact Sciences 61: 625–671.MathSciNetCrossRefGoogle Scholar
  16. Duncan, Anthony, and Michel Janssen. 2014. The Trouble with Orbits: The Stark Effect in the Old and the New Quantum Theory. Studies in History and Philosophy of Modern Physics 48: 68–83.ADSMathSciNetCrossRefGoogle Scholar
  17. Eckert, Michael. 2015. From Aether Impulse to QED: Sommerfeld and the Bremsstrahlen Theory. Studies in History and Philosophy of Modern Physics 51: 9–22.ADSMathSciNetCrossRefGoogle Scholar
  18. Forman, Paul. 1970. Alfred Landé and the Anomalous Zeeman Effect, 1919–1921. Historical Studies in the Physical Sciences 2: 153–261.CrossRefGoogle Scholar
  19. Heisenberg, Werner. 1960. Erinnerungen an die Zeit der Entwicklung der Quantenmechanik. In Theoretical Physics in the Twentieth Century. A Memorial Volume to Wolfgang Pauli, ed. Markus Fierz and Viktor Weisskopf, 40–47. New York: Interscience Publishers.Google Scholar
  20. Hendry, John. 1981. Bohr-Kramers-Slater: A Virtual Theory of Virtual Oscillators. Centaurus 25: 189–221.ADSCrossRefGoogle Scholar
  21. Hendry, John. 1984. The Creation of Quantum Mechanics and the Bohr-Pauli Dialogue. Studies in the History of Modern Science, vol. 14. Dordrecht: Reidel.Google Scholar
  22. James, Jeremiah and Christian Joas. 2015. Subsequent and Subsidiary? Rethinking the Role of Applications in Establishing Quantum Mechanics. Historical Studies in the Natural Sciences 45: 641–702.CrossRefGoogle Scholar
  23. Jammer, Max. 1966. The Conceptual Development of Quantum Mechanics. New York: McGraw-Hill.Google Scholar
  24. Jordi Taltavull, Marta. 2013. Challenging the Boundaries between Classical and Quantum Physics: The Case of Optical Dispersion. In Traditions and Transformations in the History of Quantum Physics HQ–3: Third International Conference on the History of Quantum Physics, Berlin, 28 June–2 July 2010. Max Planck Research Library for the History and Development of Knowledge Proceedings, ed. Shaul Katzir, Christoph Lehner, and Jürgen Renn, vol. 5, 29–59. Berlin: Edition Open Access.Google Scholar
  25. Kaiser, David. 2005. Drawing Theories apart: The Dispersion of Feynman Diagrams in Postwar Physics. Chicago: University of Chicago Press.CrossRefGoogle Scholar
  26. Kemble, Edwin C. 1924. Quantization in Space and the Relative Intensities of the Components of Infra-Red Absorption Bands. Proceeding National Academy of Sciences 10: 274–279.ADSCrossRefGoogle Scholar
  27. Kemble, Edwin C. 1925a. The Application of the Correspondence Principle to Degenerate Systems and the Relative Intensities of Band Lines. Physical Review 25: 1–22.ADSCrossRefGoogle Scholar
  28. Kemble, Edwin C. 1925b. Über die Intensität der Bandenlinien. Zeitschrift für Physik 35: 286–292.ADSCrossRefGoogle Scholar
  29. Klein, Ursula. 1998. Paving a Way through the Jungle of Organic Chemistry. Experimenting with Changing Systems of Order. In Experimental Essays—Versuche zum Experiment, ed. Michael Heidelberger and Friedrich Steinle, 251–271. Baden-Baden: Nomos Verlagsgesellschaft.Google Scholar
  30. Klein, Ursula. 1999. Techniques of Modelling and Paper Tools in Classical Chemistry. In Models as Mediators: Perspectives on Natural and Social Sciences, ed. Mary Morgan and Margaret Morrison, 146–167. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  31. Klein, Ursula. 2001. Paper Tools in Experimental Cultures. Studies in History and Philosophy of Science Part A 32: 265–302.CrossRefGoogle Scholar
  32. Klein, Ursula. 2003. Experiments, Models, Paper Tools. Stanford: Stanford University Press.Google Scholar
  33. Konno, Hiroyuki. 1993. Kramers’ Negative Dispersion, the Virtual Oscillator Model, and the Correspondence Principle. Centaurus 36: 117–166.MathSciNetCrossRefGoogle Scholar
  34. Kragh, Helge. 2002. Quantum Generations: A History of Physics in the Twentieth Century, 2nd ed. Princeton: Princeton University Press.zbMATHGoogle Scholar
  35. Kramers, Hendrik A. 1956. Collected scientific papers. Amsterdam: North-Holland.Google Scholar
  36. Kronig, Ralph de Laer. 1960. The Turning Point. In Theoretical Physics in the Twentieth Century. A Memorial Volume to Wolfgang Pauli, ed. Markus Fierz and Viktor Weisskopf, 5–39. New York: Interscience Publishers.Google Scholar
  37. Mehra, Jagdish, and Helmut Rechenberg. 1982a. The Historical Development of Quantum Theory: The Discovery of Quantum Mechanics 1925, vol. 2. New York: Springer.CrossRefGoogle Scholar
  38. Mehra, Jagdish, and Helmut Rechenberg. 1982b. The Historical Development of Quantum Theory: The Quantum Theory of Planck, Einstein and Sommerfeld: Its Foundation and The Rise of Its Difficulties, 1900–1925, vol. 1, Parts I and II. New York: Springer.Google Scholar
  39. Pauli, Wolfgang. 1979. Wissenschaftlicher Briefwechsel mit Bohr, Einstein, Heisenberg u.a. (1919-1929). New York: Springer.Google Scholar
  40. Radder, Hans. 1988. The Material Realization of Science. Assen: Van Gorcum.Google Scholar
  41. Radder, Hans. 1991. Heuristics and the Generalized Correspondence Principle. British Journal for the Philosophy of Science 42: 195–226.MathSciNetCrossRefGoogle Scholar
  42. Renn, Jürgen. 2013. Schrödinger and the Genesis of Wave Mechanics. In Erwin Schrödinger–50 Years After, ed. Wolfgang L. Reiter and Jakob Yngvason, 9–36. Zurich: European Mathematical Society.CrossRefGoogle Scholar
  43. Robertson, Peter. 1979. The Early Years-The Niels Bohr Institute 1921–1930. Copenhagen: Akademisk Forlag Universitetsforlaget i Københaven.Google Scholar
  44. Schrödinger, Erwin. 2011a. Eine Entdeckung von ganz außerordentlicher Tragweite: Schrödingers Briefwechsel zur Wellenmechanik und zum Katzenparadoxon, vol. 1. Heidelberg: Springer.Google Scholar
  45. Schrödinger, Erwin. 2011b. Eine Entdeckung von ganz außerordentlicher Tragweite: Schrödingers Briefwechsel zur Wellenmechanik und zum Katzenparadoxon, vol. 2. Heidelberg: Springer.Google Scholar
  46. Schweber, Silvan S. 1986. The Empiricist Temper Regnant: Theoretical Physics in the United States 1920–1950. Historical Studies in the Physical and Biological Sciences 11: 55–98.CrossRefGoogle Scholar
  47. Serwer, Daniel. 1977. Unmechanischer Zwang: Pauli, Heisenberg and the Rejection of the Mechanical Atom. Historical Studies in the Physical Sciences 8: 189–256.CrossRefGoogle Scholar
  48. Seth, Suman. 2007. Crisis and the Construction of Modern Theoretical Physics. British Journal for History of Science 40: 25–51.CrossRefGoogle Scholar
  49. Seth, Suman. 2010. Crafting the Quantum: Arnold Sommerfeld and the Practice of Theory, 1890–1926. Cambridge, Mass.: MIT Press.CrossRefGoogle Scholar
  50. Seth, Suman. 2013. Quantum Physics. In The Oxford Handbook of the History of Physics, ed. Jed Z. Buchwald and Robert Fox, 814–859. Oxford: Oxford University Press.Google Scholar
  51. Sommerfeld, Arnold. 1968a. Arnold Sommerfeld: Gesammelte Schriften, 4 vols. Braunschweig: Vieweg.Google Scholar
  52. Sommerfeld, Arnold. 2000. Arnold Sommerfeld: Wissenschaftlicher Briefwechsel, vol. 1: 1892–1918. Munich: Verlag für Geschichte der Naturwissenschaft und Technik.Google Scholar
  53. Sommerfeld, Arnold. 2004. Arnold Sommerfeld: Wissenschaftlicher Briefwechsel, vol. 2: 1919–1951. Munich: Verlag für Geschichte der Naturwissenschaft und Technik.Google Scholar
  54. Stuewer, Roger H. 1975. The Compton Effect: Turning Point in Physics. New York: Science History Publications.Google Scholar
  55. van der Waerden, Bartel Leendert. 1968. Introduction Part I. Towards Quantum Mechanics. In Sources of Quantum Mechanics, ed. Bartel Leendert van der Waerden, 1–18. New York: Dover.Google Scholar
  56. Warwick, Andrew. 1989. The Electrodynamics of Moving Bodies and the Principles of Relativity in British Physics 1894–1919. Ph.D. thesis, Cambridge University, Cambridge.Google Scholar
  57. Warwick, Andrew. 2003. Masters of Theory: Cambridge and the Rise of Mathematical Physics. Chicago: The University of Chicago Press.CrossRefGoogle Scholar
  58. Wheaton, Bruce R. 1983. The Tiger and the Shark: Empirical Roots of Wave-Particle Dualism. Cambridge: Cambridge University Press.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Martin Jähnert
    • 1
    • 2
  1. 1.Institut für Philosophie, Literatur-, Wissenschafts- und Technikgeschichte Fachbereich Wissenschaftsgeschichte, Technische Universität BerlinBerlinGermany
  2. 2.Max Planck Institute for the History of ScienceBerlinGermany

Personalised recommendations