Advertisement

Bionanoparticles as Antimicrobial Agents

  • Karabi Biswas
  • Sankar Narayan Sinha
Chapter
Part of the Nanotechnology in the Life Sciences book series (NALIS)

Abstract

Some microorganisms are regularly exposed to metals and often have inherent defense reductive mechanisms that mediate the synthesis of a diversity of nanoparticles. This property makes them some of the most beneficial biomachines for the synthesis of novel materials. A variety of nanoparticles (NPs) have been discovered for their antimicrobial properties; these include NPs of silica, Ag, titanium, copper, silver, and gold. The potential application of biogenic nanoparticles as pesticidal and antimicrobial agents will be also revised. We will highlight the mechanism of action of nanoparticles as bactericidal and antifungal agents in this chapter.

Keywords

Biogenic nanoparticles Bacteria Fungi Antimicrobial 

References

  1. Ahmad Z, Pandey R, Sharma S, Khuller GK (2005) Alginate nanoparticles as antituberculosis drug carriers: formulation development, pharmacokinetics and therapeutic potential. Ind J Chest Dis Allied Sci 48:171–176Google Scholar
  2. Akaighe N, Mac Cuspie RI, Navarro DA, Aga DS, Banerjee S, Sohn M, Sharma VK (2011) Humic acid-induced silver nanoparticle formation under environmentally relevant conditions. Environ Sci Technol 45:3895–3901CrossRefGoogle Scholar
  3. Albrecht MA, Evans CW, Raston CL (2006) Green chemistry and the health implications of nanoparticles. Green Chem 8:417–432CrossRefGoogle Scholar
  4. Alt V, Bechert T, Steinrücke P, Wagener M, Seidel P, Dingeldein E, Schnettler R (2004) An in vitro assessment of the antibacterial properties and cytotoxicity of nanoparticulate silver bone cement. Biomaterials 25(18):4383–4391Google Scholar
  5. Arumugam GV, Velayutham S, Shanmugavel S, Sundaram J (2015) Efficacy of nanostructured silica as a stored pulse protector against the infestation of bruchid beetle, Callosobruchus maculatus (Coleoptera: Bruchidae). Applied Nanosci 6(3):445–450CrossRefGoogle Scholar
  6. Barik TK, Sahu B, Swain V (2008) Nanosilica From medicine to pest control. Parasitol Res 103:253–258CrossRefGoogle Scholar
  7. Bhattacharyya A, Bhaumik A, Rani PU, Mandal S, Epidi TT (2010) Nano–particles–a recent approach to insect pest control. Afr J Biotechnol 9:3489–3493Google Scholar
  8. Burrell RE, McIntosh CL, Morris LR (1995) U.S. Patent No. 5,454,886. Washington, DC: U.S. Patent and Trademark OfficeGoogle Scholar
  9. Chandrashekharaiah M, Rathore MS, Sinha RB, Sahay A (2018) STUDIES ON POPULATION DYNAMICS OF XANTHOPIMPLA PEDATOR (F) ON TASAR SILK WORM, ANTHERAEA MYLITTA D IN DIFFERENT AGRO CLIMATIC ZONES OF INDIA. IJRD 3(9):65–69Google Scholar
  10. Chakravarthy B, ter Haar E, Bhat SS, McCoy CE, Denmark TK, Lotfipour S (2011) Simulation in medical school education: review for emergency medicine. West J Emerg Med 12(4):461Google Scholar
  11. Chakravarthy AK, Bhattacharyya A, Shashank PR, Epidi TT, Doddabasappa B, Mandal SK (2012a) DNA–tagged nano gold: a new tool for the control of the armyworm, Spodoptera litura Fab. (Lepidoptera: Noctuidae). Afr J Biotechnol 11:9295–9301Google Scholar
  12. Chakravarthy AK, Chandrashekharaiah SB, Kandakoor A, Bhattacharya K, Dhanabala K, Gurunatha K, Ramesh P (2012b) Bio efficacy of inorganic nanoparticles CdS, Nano–Ag and Nano–TiO2 against Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae). Curr Biotica 6:271–281Google Scholar
  13. Chakravarthy VS, Reddy TP, Reddy VD, Rao KV (2014) Current status of genetic engineering in cotton (Gossypium hirsutum L): an assessment. Crit review biotech 34(2):144–160Google Scholar
  14. Chandran SP, Chaudhary M, Pasricha R, Ahmad A, Sastry M (2006) Synthesis of gold nanotriangles and silver nanoparticles using Aloe vera plant extract. Biotechnol Prog 22:577–583CrossRefGoogle Scholar
  15. Chandra JH, Raj LA, Namasivayam SK, Bharani RA (2013) Improved pesticidal activity of fungal metabolite from Nomureae rileyi with chitosan nanoparticles. Proceedings of the International Conference on Advanced Nanomaterials and Emerging Engineering Technologies, 24–26 July, 2013, Chennai 387–390Google Scholar
  16. Christofoli M, Costa ECC, Bicalho KU, Domingues VC, Peixoto MF, Alves CCF, Cazal CM (2015) Insecticidal effect of nanoencapsulated essential oils from Zanthoxylum rhoifolium (Rutaceae) in Bemisia tabaci populations. Ind Crop Prod 70:301–308CrossRefGoogle Scholar
  17. Danilcauk M, Lund A, Saldo J, Yamada H, Michalik J (2006) Conduction electron spin resonance of small silver particles. Spectrochimaca Acta Part A 63:89–191Google Scholar
  18. De A, Bose R, Kumar A, Mozumdar S (2014) Management of insect pests using nanotechnology: as modern approaches. In: Targeted delivery of pesticides using biodegradable polymeric nanoparticles. Springer, New Delhi, pp 29–33CrossRefGoogle Scholar
  19. Debnath N, Das S, Seth D, Chandra R, Bhattacharya SC, Goswami A (2011) Entomotoxic effect of silica nanoparticles against Sitophilus oryzae (L.). J Pest Sci 84:99–105CrossRefGoogle Scholar
  20. Dobrucka R, Dlugaszewska J (2015) Antimicrobial activities of silver nanoparticles synthesized by using water extract of Arinicae anthodium. Ind J Microbiol 55:168–174CrossRefGoogle Scholar
  21. Feng QL, Wu J, Chen GQ, Cui FZ, Kim TN, Kim JO (2008) A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res 52:662–668CrossRefGoogle Scholar
  22. Gardea-Torresdey JL, Parsons JG, Gomez E, Peralta-Videa J, Troiani HE, Santiago P, Jose Yacaman M (2002) Formation and growth of Au nanoparticles inside live Alfalfa plants. Nano Lett 2(4):397–401CrossRefGoogle Scholar
  23. Goswami A, Roy I, Sengupta S, Debnath N (2010) Novel applications of solid and liquid formulations of nanoparticles against insect pests and pathogens. Thin Solid Films 519:1252–1257CrossRefGoogle Scholar
  24. Gong P, Li H, He X, Wang K, Hu J, Tan W (2007) Preparation and antibacterial activity of Fe3O4@Ag nanoparticles. Nanotechnology 18:604–611Google Scholar
  25. Gu H, Ho PL, Tong E, Wang L, Xu B (2003) Presenting vancomycin on nanoparticles to enhance antimicrobial activities. Nano Lett 3(9):1261–1263CrossRefGoogle Scholar
  26. Hatchett DW, Henry S (1996) Electrochemistry of sulfur adlayers on low-index faces of silver. J Phys Chem 100:9854–9859CrossRefGoogle Scholar
  27. Joerger R, Klaus T, Granqvist CG (2000) Biologically produced silver–carbon composite materials for optically functional thin-film coatings. Adv Mater 12:407–409CrossRefGoogle Scholar
  28. Kirsner R, Orsted H, Wright B (2001) Matrix metalloproteinases in normal and impaired wound healing: a potential role of nanocrystalline silver. Wounds 13:5–10Google Scholar
  29. Kim JS, Kuk E, Yu KN, Kim JH, Park SJ, Lee HJ, Kim SH, Park YK, Park YH, Hwang CY, Kim YK (2007) Antimicrobial effects of silver nanoparticles. Nanomedicine 3:95–101CrossRefGoogle Scholar
  30. Lin D, Xing B (2008) Root uptake and phytotoxicity of ZnO nanoparticles. Environ Sci Technol 42:5580–5585CrossRefGoogle Scholar
  31. Matsumura Y, Yoshikata K, Kunisaki S, Tsuchido T (2003) Mode of bacterial action of silver zeolite and its comparison with that of silver nitrate. Appl Environ Microbiol 69:4278–4281CrossRefGoogle Scholar
  32. Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramirez JT, Yacaman MJ (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16:2346–2353CrossRefGoogle Scholar
  33. Narayanan K, Sakthivel N (2010) Biological synthesis of metal nanoparticles by microbes. Adv Colloid Interf Sci 153:1–13CrossRefGoogle Scholar
  34. Peterson MSM, Bouwman J, Chen A, Deutsch M (2007) Inorganic metallo-dielectric materials fabricated using two singlestep methods based on the Tollen’s process. J Colloid Interface Sci 306:41–49CrossRefGoogle Scholar
  35. Retchkiman-Schabes PS, Canizal G, Becerra-Herrera R, Zorrilla C, Liu HB, Ascencio JA (2006) Biosynthesis and characterization of Ti/Ni bimetallic nanoparticles. Opt Mater 29:95–99CrossRefGoogle Scholar
  36. Sankar MV, Abideen S (2015) Pesticidal effect of green synthesized silver and lead nanoparticles using Avicennia marina against grain storage pest Sitophilus oryzae. Int J Nanomater Biostruct 5:32–39Google Scholar
  37. Shankar SS, Ahmad A, Pasricha R, Sastry M (2003a) Bioreduction of chloroaurate ions by geranium leaves and its endophytic fungus yields gold nanoparticles of different shapes. J Mater Chem 13:1822–1826CrossRefGoogle Scholar
  38. Shankar SS, Ahmad A, Sastry M (2003b) Geranium leaf assisted biosynthesis of silver nanoparticles. Biotechnol Prog 19:1627–1631CrossRefGoogle Scholar
  39. Shao K, Yao J (2006) Preparation of silver nanoparticles via a non–template method. Mater Lett 60:3826–3829CrossRefGoogle Scholar
  40. Shin SH, Ye MK, Kim HS, Kang HS (2007) The effects of nano–silver on the proliferation and cytokine expression by peripheral blood mononuclear cells. Int Immunopharmacol 7:1813–1818CrossRefGoogle Scholar
  41. Shiva PG (2015) Studies on Genetic Diversity in rice (Oryza sativa. L.) and QTL mapping for cold tolerance at seedling stage and heat tolerance at grain filling stage (Doctoral dissertation, Professor Jayshankar Telangana state agricultural university, Rajendranagar, Hyderabad)Google Scholar
  42. Shrivastava S, Bera T, Roy A, Singh G, Ramachandrarao P, Dash D (2007) Characterisation of enhanced antibacterial effects of novel silver nanoparticles. Nanotechnology 18:1–9CrossRefGoogle Scholar
  43. Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for gram–negative bacteria. J Colloid Interface Sci 275:177–182CrossRefGoogle Scholar
  44. Souza GIH, Marcato PD, Durn N, Esposito E (2004) Utilization of Fusarium oxysporum in the biosynthesis of silver nanoparticles and its antibacterial activities. IX National Meet Envir Microbiol, CurtibaGoogle Scholar
  45. Stadler T, Buteler M Weaver DK (2010) Novel use of nanostructured alumina as an insecticide, J clinical onc 28:21–37Google Scholar
  46. Tian J, Wong KK, Ho CM, Lok CN, Yu WY, Che CM, Chiu JF, Tam PK (2007) Tropical delivery of silver nanoparticles promotes wound healing. Chem Med Chem 2:129–136CrossRefGoogle Scholar
  47. Tomsic B, Simoncic B, Orel B, Zerjav M, Schroers HJ (2009) Antimicrobial activity of AgCl embedded in a silica matrix on cotton fabric. Carbohydr Polym 75:618–626CrossRefGoogle Scholar
  48. Tsuji T, Iryo KN, Watanabe N, Tsuji M (2002) Preparation of silver nanoparticles by laser ablation in solution, influence of laser wavelength on particle size. Appl Surf Sci 202:80–85CrossRefGoogle Scholar
  49. Wang XF, Li SF, Yua HG, Yu JG (2011) In situ anion exchange synthesis and photocatalytic activity of Ag8W4O16/AgClnanoparticle core-shell nanorods. J Mol Catal A Chem 334:52–59CrossRefGoogle Scholar
  50. Wani IA, Khatoon S, Ganguly A, Ahmed J, Ahmad T (2013) Structural characterization and antimicrobial properties of silver nanoparticles prepared by inverse microemulsion method. Colloid Surf B 101:243–250CrossRefGoogle Scholar
  51. Yang FL, Li XG, Zhu F, Lei CL (2009) Structural characterization of nanoparticles loaded with garlic essential oil and their insecticidal activity against Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). J Agric Food Chem 57:0156–10162Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Karabi Biswas
    • 1
  • Sankar Narayan Sinha
    • 1
  1. 1.Environmental Microbiology Research Laboratory, Department of BotanyUniversity of KalyaniKalyaniIndia

Personalised recommendations