Application of Nanomaterials in Plant Disease Diagnosis and Management

  • Mujeebur Rahman Khan
  • Tanveer Fatima Rizvi
  • Faheem Ahamad
Part of the Nanotechnology in the Life Sciences book series (NALIS)


Nanomaterials have substantial application in plant disease diagnosis and management. The nanoparticles and nanosensors have wide application in the detection of microbial infections and diagnosis of plant diseases. Enzyme-based biosensors coated with Au, Ag, Cu, or Ti-NPs may greatly enhance the sensitivity of diagnostic probes for plant infection detection. The nanomaterials may be used in plant disease management through two ways, i.e., direct application of the nanoparticles of a suitable antimicrobial chemical or by encapsulating an antimicrobial chemical by a nanomaterial. Direct application of nanoparticles has been found to suppress a number of plant pathogenic fungi and some bacteria. Nanomaterials, nanotubes, and nanocapsules can efficiently carry higher concentration of active ingredients of pesticides, etc. and may also regulate the release of the chemical. We present here a critical review on the use of nanomaterials in plant disease diagnosis and management and have discussed in detail various relevant aspects, including the commercial use of this technology.


  1. Agarwala M, Choudhury B, Yadav RNS (2014) Comparative study of antibiofilm activity of copper oxide and iron oxide nanoparticles against multidrug resistant biofilm forming uropathogens. Indian J Microbiol 54(3):365–368CrossRefPubMedPubMedCentralGoogle Scholar
  2. Algar WR, Krull UJ (2008) Quantum dots as donors in fluorescence resonance energy transfer for the bioanalysis of nucleic acids, proteins, and other biological molecules. Anal Bioanal Chem 391:1609–1618CrossRefGoogle Scholar
  3. Al-Hazmi F, Alnowaiser F, Al-Ghamdi AA, Al-Ghamdi AA, Aly MM, Al-Tuwirqi RM, El-Tantawy F (2012) A new large–scale synthesis of magnesium oxide nanowires: structural and antibacterial properties. Superlattice Microstruct 52(2):200–209CrossRefGoogle Scholar
  4. Arciniegas-Grijalba PA, Patiño-Portela MC, Mosquera-Sánchez LP, Guerrero-Vargas JA, Rodríguez-Páez JE (2017) ZnO nanoparticles (ZnO–NPs) and their antifungal activity against coffee fungus Erythriciumsalmonicolor. Appl Nanosci 7(5):225–241CrossRefGoogle Scholar
  5. Azam A, Ahmed AS, Oves M, Khan MS, Memic A (2012) Size–dependent antimicrobial properties of CuO nanoparticles against Gram–positive and–negative bacterial strains. Int J Nanomedicine 7:3527–3535CrossRefPubMedPubMedCentralGoogle Scholar
  6. Basu M, Seggerson S, Henshaw J, Jiang J, Cordona RA, Lefave C (2004) Nano–biosensor development for bacterial detection during human kidney infection. Use of NanoWire arrays (GNWA). Glycoconj J 21:487–496CrossRefGoogle Scholar
  7. Berger TJ, Spadaro JA, Chapin SE, Becker RO (1976) Electrically generated silver ions: quantitative effects on bacterial and mammalian cells. Antimicrob Agents Chemother 9(2):357CrossRefPubMedPubMedCentralGoogle Scholar
  8. Biswal SK, Nayak AK, Parida UK, Nayak PL (2012) Applications of nanotechnology in agriculture and food sciences. IJSID 2(1):21–36Google Scholar
  9. Boonham N, Glover R, Tomlinson J, Mumford R (2008) Exploiting generic platform technologies for the detection and identification of plant pathogens. In: Sustainable disease management in a European context. Springer, Berlin, pp 355–363CrossRefGoogle Scholar
  10. Borcherding J, Baltrusaitis J, Chen H, Stebounova L, Wu CM, Rubasinghege G, Mudunkotuwa IA, Caraballo JC, Zabner J, Grassian VH, Comellas AP (2014) Iron oxide nanoparticles induce Pseudomonas aeruginosa growth, induce biofilm formation, and inhibit antimicrobial peptide function. Environ Sci Nano 1(2):123–132CrossRefPubMedPubMedCentralGoogle Scholar
  11. Borkow G, Gabbay J (2005) Copper as a biocidal tool. Curr Med Chem 12(18):2163–2175CrossRefPubMedPubMedCentralGoogle Scholar
  12. Bramhanwade K, Shende S, Bonde S, Gade A, Rai M (2016) Fungicidal activity of Cu nanoparticles against Fusarium causing crop diseases. Environ Chem Lett 14(2):229–235CrossRefGoogle Scholar
  13. Brunel F, El Gueddari NE, Moerschbacher BM (2013) Complexation of copper (II) with chitosan nanogels: toward control of microbial growth. Carbohydr Polym 92(2):1348–1356CrossRefPubMedPubMedCentralGoogle Scholar
  14. Bryaskova R, Pencheva D, Nikolov S, Kantardjiev T (2011) Synthesis and comparative study on the antimicrobial activity of hybrid materials based on silver nanoparticles (AgNps) stabilized by polyvinylpyrrolidone (PVP). J Chem Biol 4:185–191CrossRefPubMedPubMedCentralGoogle Scholar
  15. Buffat P, Borel JP (1976) Size effect on the melting temperature of gold particles. Phys Rev A 13(6):2287CrossRefGoogle Scholar
  16. Cao X, Ye Y, Liu S (2011) Gold nanoparticle–based signal amplification for biosensing. Anal Biochem 417:1–16CrossRefPubMedPubMedCentralGoogle Scholar
  17. Castañeda MT, Alegret S, Merkocm A (2007) Electrochemical sensing of DNA using gold nanoparticles. Electroanalysis 19:743–753CrossRefGoogle Scholar
  18. Chambers CW, Proctor CM, Kabler PW (1962) Bactericidal effect of low concentrations of silver. J Am Water Works Assoc 54(2):208–216CrossRefGoogle Scholar
  19. Chartuprayoon N, Rheem Y, Chen W, Myung N (2010) Detection of plant pathogen using LPNE grown single conducting polymer Nanoribbon. In: Meeting abstracts. The Electrochemical Society, PenningtonGoogle Scholar
  20. Cioffi N, Torsi L, Ditaranto N (2004) Antifungal activity of polymer–based copper nanocomposite coatings. Appl Phys Lett 85(12):2417–2419CrossRefGoogle Scholar
  21. Clement JL, Jarret PS (1994) Antimicrobial silver. Metal-Based Drugs 1:467–482CrossRefPubMedPubMedCentralGoogle Scholar
  22. Dubchak S, Ogar A, Mietelski AW, Turnau K (2010) Influence of silver and titanium nanoparticles on arbuscularmycorrhiza colonization and accumulation of radiocaesium in Helianthus annuus. Span J Agric Res 8:103–108CrossRefGoogle Scholar
  23. Esteban-Tejeda L, Malpartida F, Esteban-Cubillo A, Pecharromán C, Moya JS (2009) Antibacterial and antifungal activity of a soda–lime glass containing copper nanoparticles. Nanotechnology 20(50):505701CrossRefPubMedPubMedCentralGoogle Scholar
  24. Fang W, Xing M, Zhang J, (2014) A new approach to prepare Ti3+ self-doped TiO2 via NaBH4 reduction and hydrochloric acid treatment. Applied Catalysis B: Environmental, 160:240–246Google Scholar
  25. Fang Y, Ramasamy R (2015) Current and prospective methods for plant disease detection. Biosensors 5(3):537–561.Google Scholar
  26. Frasco MF, Chaniotakis N (2009) Semiconductor quantum dots in chemical sensors and biosensors. Sensors 9:7266–7286CrossRefPubMedPubMedCentralGoogle Scholar
  27. Frewer LJ, Norde W, Fischer ARH, Kampers FWH (2011) Nanotechnology in the agri–food sector: implications for the future. Wiley–VCH, WeinheimCrossRefGoogle Scholar
  28. Giannousi K, Avramidis I, Dendrinou-Samara C (2013) Synthesis, characterization and evaluation of copper based nanoparticles as agrochemicals against Phytophthorainfestans. RSC Adv 3(44):21743–21752CrossRefGoogle Scholar
  29. Gill P, Alvandi AH, Abdul-Tehrani H, Sadeghizadeh M (2008) Colorimetric detection of Helicobacter pylori DNA using isothermal helicase–dependent amplification and gold nanoparticle probes. Diagn Microbiol Infect Dis 62:119–124CrossRefGoogle Scholar
  30. Gogos A, Knauer K, Bucheli TD (2012) Nanomaterials in plant protection and fertilization: current state, foreseen applications, and research priorities. J Agric Food Chem 60(39):9781–9792CrossRefGoogle Scholar
  31. Gruère G, Narrod C, Abbott L (2011) Agriculture, food, and water nanotechnologies for the poor: opportunities and constraints. Policy brief 19. International Food Policy Research Institute, Washington, DC. Available from Accessed 6 May 2014
  32. Guzman MG, Dille F, Godet S (2009) Synthesis of silver nanoparticles by chemical reduction method and their antibacterial activity. Int J Chem Biol Eng 2:104–111Google Scholar
  33. Hatschek E (1931) Electro Chem. Processes, Ltd, assignee. Brouisol. British Patent No 392–556Google Scholar
  34. He L, Liu Y, Mustapha A, Lin M (2011) Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum. Microbiol Res 166(3):207–215CrossRefPubMedPubMedCentralGoogle Scholar
  35. Horst RK (1990) Westcott’s plant disease handbook, 5th edn. Chapman & Hall, New YorkCrossRefGoogle Scholar
  36. Jayaseelan C, Rahuman AA, Kirthi AV, Marimuthu S, Santhoshkumar T, Bagavan A, Gaurav K, Karthik L, Rao KB (2012) Novel microbial route to synthesize ZnO nanoparticles using Aeromonashydrophila and their activity against pathogenic bacteria and fungi. Spectrochimica Acta A Mol Biomol Spectrosc 90:78–84CrossRefGoogle Scholar
  37. Jeng HA, Swanson J (2006) Toxicity of metal oxide nanoparticles in mammalian cells. J Environ Sci Health Part A 41(12):2699–2711CrossRefGoogle Scholar
  38. Jo YK, Kim BH, Jung G (2009) Antifungal activity of silver ions and nanoparticles on phytopathogenic fungi. Plant Dis 93(10):1037–1043CrossRefGoogle Scholar
  39. Kanhed P, Birla S, Gaikwad S, Gade A, Seabra AB, Rubilar O, Duran N, and Rai M (2014) In vitro antifungal efficacy of copper nanoparticles against selected crop pathogenic fungi. Materials Lett 115:13–17Google Scholar
  40. Kasprowicz MJ, Kozioł M, Gorczyca A (2010) The effect of silver nanoparticles on phytopathogenic spores of Fusarium culmorum. Can J Microbiol 56(3):247–253CrossRefPubMedPubMedCentralGoogle Scholar
  41. Khan MR, Haque Z (2013) Morphological and biochemical responses of five tobacco cultivars to simultaneous infection with Pythium aphanidermatum and Meloidogyne incognita. Phytopat Medit 52:98–109Google Scholar
  42. Khan MR, Rizvi TF (2014) Nanotechnology: scope and application in plant disease management. Plant Pathol J 13:214–231CrossRefGoogle Scholar
  43. Khan MR, Rizvi TF (2017) Application of nanofertilizer and nanopesticides for improvements in crop production and protection. In: Nanoscience and plant–soil systems. Springer, Cham, pp 405–427CrossRefGoogle Scholar
  44. Khan MR, Mohidin FA, Khan U, Ahamad F (2016) Native Pseudomonas spp. suppressed the root–knot nematode in in vitro and in vivo, and promoted the nodulation and grain yield in the field grown mungbean. Biol Control 101:159–168CrossRefGoogle Scholar
  45. Khan MR, Rizvi TF, Ahamad F (2019) Effect of nanoparticles on phytopathogens. In: Ghobanpour M, Wani SH (eds) Advances in phytonanotechnology: from synthesis to application. Elsevier/Academic Press, London, p 466Google Scholar
  46. Kim SW, Kim KS, Lamsal K, Kim YJ, Kim SB, Jung M, Sim SJ, Kim HS, Chang SJ, Kim JK, Lee YS (2009) An in vitro study of the antifungal effect of silver nanoparticles on oak wilt pathogen Raffaelea sp. J Microbiol Biotechnol 19(8):760–764PubMedGoogle Scholar
  47. Kim SW, Jung JH, Lamsal K, Kim YS, Min JS, Lee YS (2012) Antifungal effects of silver nanoparticles (AgNPs) against various plant pathogenic fungi. Mycobiology 40(1):53–58CrossRefPubMedPubMedCentralGoogle Scholar
  48. Krishnaraj CR, Ramachandran K, Mohan K, Kalaichelvan PT (2012) Optimization for rapid synthesis of silver nanoparticles and its effect on phytopathogenic fungi. Spectrochim Acta A Mol Biomol Spectrosc 93:95–99CrossRefPubMedPubMedCentralGoogle Scholar
  49. Kuila T, Bose S, Khanra P, Mishra AK, Kim NH, Lee JH (2011) Recent advances in graphene–based biosensors. Biosens Bioelectron 26:4637–4648CrossRefPubMedPubMedCentralGoogle Scholar
  50. Kumar R, Sharon M, Choudhary AK (2010) Nanotechnology in agricultural diseases and food safety. J Phytology 2(4):83–92Google Scholar
  51. Lamsal K, Sang-Woo K, Jung JH, Kim YS, Kim KU, Lee YS (2010) Inhibition effects of silver nanoparticles against powdery mildews on cucumber and pumpkin. Microbiology 39(1):26–32Google Scholar
  52. Lopez MM, Llop P, Olmos A, Marco-Noales E, Cambra M, Bertolini E (2009) Are molecular tools solving the challenges posed by detection of plant pathogenic bacteria and viruses? Curr Issues Mol Biol 11:13–46PubMedPubMedCentralGoogle Scholar
  53. Mandler D, Kraus-Ophir S (2011) Self–assembled monolayers (SAMs) for electrochemical sensing. J Solid State Electrochem 15:1535–1558CrossRefGoogle Scholar
  54. Min JS, Kim KS, Kim SW, Jung JH, Lamsal K, Kim SB, Jung MY, Lee YS (2009) Effects of colloidal silver nanoparticles on sclerotium–forming phytopathogenic fungi. Plant Pathol J 25(4):376–380CrossRefGoogle Scholar
  55. Mishra VL, Sharma R (2017) Green synthesis of nanoparticles and their antibacterial activity against pathogenic bacteria. Int J Pharma Sci Res 90:24Google Scholar
  56. Mondal KK, Mani C (2012) Investigation of the antibacterial properties of nanocopper against Xanthomonas axonopodis pv. punicae, the incitant of pomegranate bacterial blight. Ann Microbiol 62:889CrossRefGoogle Scholar
  57. Nelson BP, Grimsrud TE, Liles MR, Goodman RM, Corn RM (2001) Surface plasmon resonance imaging measurements of DNA and RNA hybridization adsorption onto DNA microarrays. Anal Chem 73:1–7CrossRefPubMedPubMedCentralGoogle Scholar
  58. Nene YL, Thapliyal PN (1979) List of chemicals used in plant disease control. In: Fungicides in plant disease control, 2nd edn. Oxford & IBH Publishing Co, New Delhi/Bombay/Calcutta, pp 429–441Google Scholar
  59. Padmavathy N, Vijayaraghavan R (2008) Enhanced bioactivity of ZnO nanoparticles—an antimicrobial study. Sci Technol Adv Mater 9(3):035004CrossRefPubMedPubMedCentralGoogle Scholar
  60. Park HJ, Kim SH, Kim HJ, Choi SH (2006) A new composition of nanosized silica–silver for control of various plant diseases. Plant Pathol J 22:295–302CrossRefGoogle Scholar
  61. Patra JK, Baek K-H (2017) Antibacterial activity and synergistic antibacterial potential of biosynthesized silver nanoparticles against food borne pathogenic bacteria along with its anticandidal and antioxidant effects. Front Microbiol 8:167CrossRefPubMedPubMedCentralGoogle Scholar
  62. Peng X, Palma S, Fisher NS, Wong SS (2011) Effect of morphology of ZnO nanostructures on their toxicity to marine algae. Aquat Toxicol 102(3–4):186–196CrossRefGoogle Scholar
  63. Pérez-de-Luque A, Hermosín MC (2013) Nanotechnology and its use in agriculture. In: Bagchi D, Bagchi M, Moriyama H, Shahidi F (eds) Bio–nanotechnology: a revolution in food, biomedical and health sciences. Wiley–Blackwell, West Sussex, pp 299–405Google Scholar
  64. Pérez-López B, Merkoçi A (2011) Nanoparticles for the development of improved (bio) sensing systems. Anal Bioanal Chem 399:1577–1590CrossRefGoogle Scholar
  65. Perlatti B, de Souza Bergo PL, da Silva MF (2013) Polymeric nanoparticle–based insecticides: a controlled release purpose for agrochemicals, insecticides. In: Trdan S (ed) Insecticides: development of safer and more effective technologies. InTech, Rijeka, pp 523–550Google Scholar
  66. Ponmurugan P, Manjukarunambika K, Elango V, Gnanamangai BM (2016) Antifungal activity of biosynthesised copper nanoparticles evaluated against red root–rot disease in tea plants. J Exp Nanosci 11(13):1019–1031CrossRefGoogle Scholar
  67. Prasad R, Kumar V, Prasad KS (2014) Nanotechnology in sustainable agriculture: present concerns and future aspects. Afr J Biotechnol 13(6):705–713CrossRefGoogle Scholar
  68. Rad F, Mohsenifar A, Tabatabaei M, Safarnejad MR, Shahryari F, Safarpour H, Foroutan A, Mardi M, Davoudi D, Fotokian M (2012) Detection of Candidatus Phytoplasma aurantifolia with a quantum dots fret–based biosensor. J Plant Pathol 94:525–534Google Scholar
  69. Rakshit S, Ghosh S, Chall S, Mati SS, Moulik SP, Bhattacharya SC (2013) Controlled synthesis of spin glass nickel oxide nanoparticles and evaluation of their potential antimicrobial activity: a cost effective and eco friendly approach. RSC Adv 3(42):19348–19356CrossRefGoogle Scholar
  70. Rao KJ, Paria S (2013) Use of sulfur nanoparticles as a green pesticide on Fusarium solani and Venturia inaequalis phytopathogens. RSC Adv 3(26):10471–10478CrossRefGoogle Scholar
  71. Rodríguez-Tobías H, Morales G, Olivas A, Grande D (2015) One-pot formation of ZnO-graft-Poly (d, l-Lactide) hybrid systems via microwave-assisted polymerization of d, l-Lactide in the presence of ZnO nanoparticles. Macromol Chem Phy 216(15):1629–1637CrossRefGoogle Scholar
  72. Safarpour H, Safarnejad MR, Tabatabaei M, Mohsenifar A, Rad F, Basirat M, Shahryari F, Hasanzadeh F (2012) Development of a quantum dots FRET–based biosensor for efficient detection of Polymyxa betae. Can J Plant Pathol 34:507–515CrossRefGoogle Scholar
  73. Safavi K, Mortazaeinezahad F, Esfahanizadeh M, Javad AM (2011) In vitro antibacterial activity of nanomaterial for using in tobacco plants tissue culture. World Acad Sci Eng Technol 79:372–373Google Scholar
  74. Sarlak N, Taherifar A, Salehi F (2014) Synthesis of nanopesticides by encapsulating pesticide nanoparticles using functionalized carbon nanotubes and application of new nanocomposite for plant disease treatment. J Agric Food Chem 62:4833–4838CrossRefPubMedPubMedCentralGoogle Scholar
  75. Sato K, Hosokawa K, Maeda M (2003) Rapid aggregation of gold nanoparticles induced by non–cross–linking DNA hybridization. J Am Chem Soc 125:8102–8103CrossRefPubMedPubMedCentralGoogle Scholar
  76. Shiddiky MJ, Torriero AA (2011) Application of ionic liquids in electrochemical sensing systems. Biosens Bioelectron 26:1775–1787CrossRefPubMedPubMedCentralGoogle Scholar
  77. Shipway AN, Katz E, Willner I (2000) Nanoparticle arrays on surfaces for electronic, optical, and sensor applications. ChemPhysChem 1:18–52CrossRefPubMedPubMedCentralGoogle Scholar
  78. Singh S, Singh M, Agrawal VV, Kumar A (2010) An attempt to develop surface plasmon resonance based immune sensor for Karnal bunt (Tilletia indica) diagnosis based on the experience of nano–gold based lateral flow immune–dipstick test. Thin Solid Films 519:1156–1159CrossRefGoogle Scholar
  79. Sofi W, Gowri M, Shruthilaya M, Rayala S, Venkatraman G (2012) Silver nanoparticles as an antibacterial agent for endodontic infections. BMC Infect Dis 12(1):60CrossRefGoogle Scholar
  80. Sonkaria S, Ahn SH, Khare V (2012) Nanotechnology and its impact on food and nutrition: a review. Recent Pat Food Nutr Agric 4(1):8–18CrossRefPubMedPubMedCentralGoogle Scholar
  81. Storhoff JJ, Elghanian R, Mucic RC, Mirkin CA, Letsinger RL (1998) One–pot colorimetric differentiation of polynucleotides with single base imperfections using gold nanoparticle probes. J Am Chem Soc 120:1959–1964CrossRefGoogle Scholar
  82. Thompson AKDAM (2004) Biosensors for the detection of bacteria. Can J Microbiol 50:69–77CrossRefPubMedPubMedCentralGoogle Scholar
  83. Umasankar Y, Ramasamy RP (2013) Highly sensitive electrochemical detection of methyl salicylate using electroactive gold nanoparticles. Analyst 138:6623–6631CrossRefPubMedPubMedCentralGoogle Scholar
  84. Vaseghi A, Safaie N, Bakhshinejad B, Mohsenifar A, and Sadeghizadeh M (2013) Detection of Pseudomonas syringae pathovars by thiol-linked DNA–Gold nanoparticle probes. Sensors and Actuators B: Chemical, 181:644–651Google Scholar
  85. Wang Z, Ma L (2009) Gold nanoparticle probes. Coord Chem Rev 253:1607–1618CrossRefGoogle Scholar
  86. Wang S, Lawson R, Ray RC, Yu H (2011) Toxic effects of gold nanoparticles on Salmonella typhimurium bacteria. Toxicol Ind Health 27:547–554CrossRefPubMedPubMedCentralGoogle Scholar
  87. Xie Y, He Y, Irwin PL, Jin T, Shi X (2011) Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni. Appl Environ Microbiol 77(7):2325–2331CrossRefPubMedPubMedCentralGoogle Scholar
  88. Yamamoto O (2001) Influence of particle size on the antibacterial activity of zinc oxide. Int J Inorg Mater 3(7):643–646CrossRefGoogle Scholar
  89. Yao KS, Li SJ, Tzeng KC, Cheng TC, Chang CY, Chiu CY, Liao CY, Hsu JJ, Lin ZP (2009) Fluorescence silica nanoprobe as a biomarker for rapid detection of plant pathogens. Adv Mater Res 79:513–516CrossRefGoogle Scholar
  90. Yousef JM, Danial EN (2012) In vitro antibacterial activity and minimum inhibitory concentration of zinc oxide and nano–particle zinc oxide against pathogenic strains. J Health Sci 2(4):38–42Google Scholar
  91. Zhang L, Jiang Y, Ding Y, Povey M, York D (2007) Investigation into the antibacterial behaviour of suspensions of ZnO nanoparticles (ZnOnanofluids). J Nanopart Res 9(3):479–489CrossRefGoogle Scholar
  92. Zhao W, Brook MA, Li Y (2008) Design of gold nanoparticle–based colorimetric biosensing assays. Chembiochem 9:2363–2371CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Mujeebur Rahman Khan
    • 1
  • Tanveer Fatima Rizvi
    • 1
  • Faheem Ahamad
    • 1
  1. 1.Department of Plant Protection, Faculty of Agricultural SciencesAligarh Muslim UniversityAligarhIndia

Personalised recommendations