Advertisement

Finite Difference Methods

  • Oscar Castro-OrgazEmail author
  • Willi H. Hager
Chapter

Abstract

The SWE are a system of two nonlinear hyperbolic PDEs that must be numerically solved to describe the time evolution of the fluid velocity and water depth in the entire computational domain. Finite-difference methods to obtain approximate numerical solutions are described in this chapter. First, basic numerical aspects are presented. The implementation of boundary conditions for continuous and discontinuous flows is then discussed, and various schemes widely used are explained in detail. The performance of these schemes is assessed using analytical solutions and experimental data for selected test cases.

References

  1. Anderson, J. D. (1995). Computational fluid dynamics: The basics with applications. McGraw-Hill, New York.Google Scholar
  2. Bermudez, A., & Vazquez, M. E. (1994). Upwind methods for hyperbolic conservation laws with source terms. Computers & Fluids, 23(8), 1049–1071.MathSciNetCrossRefGoogle Scholar
  3. Bhallamudi, S. M. (2002). Computation of open-channel flows with shocks: an overview. In R. Prasad & S. Vedula (Eds.), Research perspectives in hydraulics and water resources engineering (pp. 89–130). London, UK: World Scientific.CrossRefGoogle Scholar
  4. Chaudhry, M. H. (2008). Open-channel flow (2nd ed.). New York: Springer.CrossRefGoogle Scholar
  5. Courant, R., Friedrichs, K., & Lewy, H. (1928). Über die partiellen Differenzengleichungen der mathematischen Physik [On the partial differential equations in Mathematical physics]. Mathematische Annalen, 100(1), 32–74 (in German).MathSciNetCrossRefGoogle Scholar
  6. Courant, R., Isaacson, E., & Rees, M. (1952). On the solution of nonlinear hyperbolic differential equations by finite differences. Communications on Pure and Applied Mathematics, 5(3), 243–255.Google Scholar
  7. Cunge, J. A. (1975). Rapidly varying flow in power and pumping canals. In K. Mahmood & V. Yevjevich (Eds.), Unsteady flow in open channels (Chap. 14, pp. 539–586). Fort Collins, CO: Water Resources Publications.Google Scholar
  8. Cunge, J. A., Holly, F. M., & Verwey, A. (1980). Practical aspects of computational river hydraulics. London: Pitman.Google Scholar
  9. Favre, H. (1935). Etude théorique et expérimentale des ondes de translation dans les canaux découverts. [Theoretical and experimental study of travelling surges in open channels]. Dunod, Paris, France (in French).Google Scholar
  10. Fennema, R. J., & Chaudhry, M. H. (1986). Explicit numerical schemes for unsteady free-surface flows with shocks. Water Resources Research, 22(13), 1923–1930.CrossRefGoogle Scholar
  11. Garcia-Navarro, P., Alcrudo, F., & Saviron, J. M. (1992). 1-D open-channel flow simulation using TVD-McCormack scheme. Journal of Hydraulic Engineering, 118(10), 1359–1372.CrossRefGoogle Scholar
  12. Garcia-Navarro, P., & Saviron, J. M. (1992). McCormack’s method for the numerical simulation of one-dimensional discontinuous unsteady open-channel flow. Journal of Hydraulic Research, 30(1), 95–105.CrossRefGoogle Scholar
  13. Gharangik, A. M., & Chaudhry, M. H. (1991). Numerical simulation of hydraulic jump. Journal of Hydraulic Engineering, 117(9), 1195–1211.CrossRefGoogle Scholar
  14. Henderson, F. M. (1966). Open channel flow. New York: MacMillan Co.Google Scholar
  15. Hirsch, C. (1988). Numerical computation of internal and external flows, vol. 1: Fundamentals of numerical discretization. Chichester: Wiley.zbMATHGoogle Scholar
  16. Hirsch, C. (1990). Numerical computation of internal and external flows, vol. 2: computational methods for inviscid and viscous flows (Vol. 2). Chichester: Wiley.zbMATHGoogle Scholar
  17. Hoffman, J. D. (2001). Numerical methods for engineers and scientists (2nd ed.). New York: Marcel Dekker.zbMATHGoogle Scholar
  18. Hseng, M., & Chu, C. R. (2000). The simulation of dam-break flows by an improved predictor-corrector TVD scheme. Advances in Water Resources, 23(6), 637–643.CrossRefGoogle Scholar
  19. Jain, S. C. (2001). Open channel flow. New York: Wiley.Google Scholar
  20. Jameson, A., Schmidt, W., & Turkel, E. (1981). Numerical solutions of the Euler equations by finite volume methods using Runge-Kutta time-stepping schemes. American Institute of Aeronautics and Astronautics, Fluid and Plasma Dynamics Conf., Palo Alto CA, AIAA-81-1259.Google Scholar
  21. Lax, P. (1954). Weak solutions of nonlinear hyperbolic equations and their numerical computation. Communications on Pure and Applied Mathematics, 7, 159–193.MathSciNetCrossRefGoogle Scholar
  22. Lax, P. D., & Richtmyer, R. D. (1956). Survey of the stability of linear finite difference equations. Communications on Pure and Applied Mathematics, 9, 267–293.MathSciNetCrossRefGoogle Scholar
  23. Lax, P., & Wendroff, B. (1960). System of conservation laws. Communications on Pure and Applied Mathematics, 13(2), 217–237.MathSciNetCrossRefGoogle Scholar
  24. Liggett, J. A., & Cunge, J. A. (1975). Numerical methods of solution of the unsteady flow equations. In K. Mahmood & V. Yevjevich (Eds.), Unsteady flow in open channels (Chap. 4, pp. 89–179). Fort Collins, CO: Water Resources Publications.Google Scholar
  25. MacCormack, R. W. (1969). The effect of viscosity in hypervelocity impact cratering. American Institute Aeronautics and Astronautics, Paper 69–354.Google Scholar
  26. Montes, J. S. (1998). Hydraulics of open channel flow. Reston, VA: ASCE.Google Scholar
  27. Roache, P. J. (1972). Computational fluid dynamics. Albuquerque, NM: Hermosa Publishers.zbMATHGoogle Scholar
  28. Steger, J. L., & Warming, R. F. (1981). Flux vector splitting of the inviscid gas dynamic equations with application to finite-difference methods. Journal of Computational Physics, 40(2), 263–293.MathSciNetCrossRefGoogle Scholar
  29. Stoker, J. J. (1957). Water waves: The mathematical theory with applications. New York: Interscience Publishers.zbMATHGoogle Scholar
  30. Sturm, T. W. (2001). Open channel hydraulics. New York: McGraw-Hill.Google Scholar
  31. Terzidis, G., & Strelkoff, T. (1970). Computation of open channel surges and shocks. Journal of the Hydraulics Division, ASCE, 96(HY12), 2581–2610.Google Scholar
  32. Toro, E. F. (2001). Shock-capturing methods for free-surface shallow flows. Singapore: Wiley.zbMATHGoogle Scholar
  33. Toro, E. F. (2009). Riemann solvers and numerical methods for fluid dynamics. London: Springer.CrossRefGoogle Scholar
  34. Zoppou, C., & Roberts, S. (2003). Explicit schemes for dam-break simulations. Journal of Hydraulic Engineering, 129(1), 11–34.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.University of CórdobaCórdobaSpain
  2. 2.VAW, ETH ZürichZürichSwitzerland

Personalised recommendations