Fundamental Equations of Free Surface Flows

  • Oscar Castro-OrgazEmail author
  • Willi H. Hager


Open channel flow is the study of the movement of liquids with a free surface, which is by definition an interface in contact with the atmosphere.


  1. Boussinesq, J. (1877). Essai sur la théorie des eaux courantes [Essay on the theory of water flow]. Mémoires présentés par divers savants à l’Académie des Sciences, Paris 23, pp. 1–680 (in French).Google Scholar
  2. Cantero-Chinchilla, F., Castro-Orgaz, O., Dey, S., & Ayuso, J. L. (2016). Nonhydrostatic dam break flows II: One-dimensional depth-averaged modelling for movable bed flows. Journal of Hydraulic Engineering, 142(12), 04016069.CrossRefGoogle Scholar
  3. Castro-Orgaz, O., & Hager, W. H. (2009). Classical hydraulic jump: Basic flow features. Journal of Hydraulic Research, 47(6), 744–754.CrossRefGoogle Scholar
  4. Castro-Orgaz, O., & Hager, W.H. (2017). Non-hydrostatic free surface flows. In Advances in geophysical and environmental mechanics and mathematics (696 pages), Berlin: Springer, Scholar
  5. Castro-Orgaz, O., Hutter, K., Giráldez, J. V., & Hager, W. H. (2015). Non-hydrostatic granular flow over 3D terrain: New Boussinesq-type gravity waves? Journal of Geophysical Research: Earth Surface, 120(1), 1–28.Google Scholar
  6. Chanson, H. (2004). The hydraulics of open channel flows: An introduction. Oxford, UK: Butterworth-Heinemann.Google Scholar
  7. Chaudhry, M. H. (2008). Open-channel flow (2nd ed.). Berlin: Springer.CrossRefGoogle Scholar
  8. Chen, C. L., & Chow, V. T. (1968). Hydrodynamics of mathematically simulated surface runoff. Hydraulic Engineering Series No. 18, Civil Engineering Studies. Urbana-Champaign: University of Illinois.Google Scholar
  9. Chow, V. T. (1959). Open channel hydraulics. New York: McGraw-Hill.Google Scholar
  10. Chow, V. T., Maidment, D. R., & Mays, L. W. (1988). Applied hydrology. New York: McGraw-Hill.Google Scholar
  11. Cunge, J. A., Holly, F. M., & Verwey, A. (1980). Practical aspects of computational river hydraulics. London: Pitman.Google Scholar
  12. de Saint-Venant, A.B. (1871). Théorie du mouvement non permanent des eaux, avec application aux crues des rivières et à l’introduction des marrées dans leur lit [Theory of unsteady water movement, applied to floods in rivers and the effect of tidal flows]. Comptes Rendus de l’Académie des Sciences, 73, 147–154; 73, 237–240 (in French).Google Scholar
  13. Denlinger, R. P., & Iverson, R. M. (2004). Granular avalanches across irregular three-dimensional terrain: 1. Theory and computation. Journal of Geophysical Research: Earth Surface, 109(F1), F01014. Scholar
  14. Denlinger, R. P., & O’Connell, D. R. H. (2008). Computing nonhydrostatic shallow-water flow over steep terrain. Journal of Hydraulic Engineering, 134(11), 1590–1602.CrossRefGoogle Scholar
  15. Dressler, R. F. (1978). New nonlinear shallow flow equations with curvature. Journal of Hydraulic Research, 16(3), 205–222.CrossRefGoogle Scholar
  16. Henderson, F. M. (1966). Open channel flow. New York: MacMillan.Google Scholar
  17. Iverson, R. M. (2005). Debris-flow mechanics. In M. Jakob & O. Hungr (Eds.), Debris flow hazards and related phenomena (pp. 105–134). Heidelberg: Springer-Praxis.CrossRefGoogle Scholar
  18. Iverson, R. M., & Ouyang, C. (2015). Entrainment of bed material by Earth-surface mass flows: Review and reformulation of depth-integrated theory. Reviews of Geophysics, 53(1), 27–58. Scholar
  19. Jaeger, C. (1956). Engineering fluid mechanics. Edinburgh: Blackie and Son.Google Scholar
  20. Jain, S. C. (2001). Open channel flow. New York: Wiley & Sons.Google Scholar
  21. Katopodes, N. D. (2019). Free surface flow: Shallow-water dynamics. Oxford, UK: Butterworth-Heinemann.Google Scholar
  22. Keulegan, G. H. (1942). Equation of motion for the steady mean flow of water in open channels. Journal of Research, US National Bureau of Standards, 29, 97–111.Google Scholar
  23. Keulegan, G. H., & Patterson, G. W. (1943). Effect of turbulence and channel slope in translation waves. Journal of Research, US National Bureau of Standards, 30, 461–512.Google Scholar
  24. Khan, A. A., & Steffler, P. M. (1996a). Physically-based hydraulic jump model for depth-averaged computations. Journal of Hydraulic Engineering, 122(10), 540–548.Google Scholar
  25. Khan, A. A., & Steffler, P. M. (1996b). Modelling overfalls using vertically averaged and moment equations. Journal of Hydraulic Engineering, 122(7), 397–402.CrossRefGoogle Scholar
  26. Khan, A. A., & Steffler, P. M. (1996c). Vertically averaged and moment equations model for flow over curved beds. Journal of Hydraulic Engineering, 122(1), 3–9.CrossRefGoogle Scholar
  27. Lai, C. (1986). Numerical modelling of unsteady open-channel flow. In Advances in hydroscience, 14, 161–333.Google Scholar
  28. Lauffer, H. (1935). Druck, Energie und Fliesszustand in Gerinnen mit grossem Gefälle [Pressure, energy and condition of flow in channels of high bottom slope]. Wasserkraft und Wasserwirtschaft, 30(7), 78–82 (in German).Google Scholar
  29. Le Méhauté, B. (1976). An introduction to hydrodynamics and water waves. New York: Springer.CrossRefGoogle Scholar
  30. Liggett, J. A. (1994). Fluid mechanics. New York: McGraw-Hill.Google Scholar
  31. Montes, J. S. (1998). Hydraulics of open channel flow. Reston VA: ASCE Press.Google Scholar
  32. Pudasaini, S. P., & Hutter, K. (2007). Avalanche dynamics. Berlin: Springer.Google Scholar
  33. Rodi, W. (1980). Turbulence models and their application in hydraulics: A state-of-the-art review. Dordrecht: IAHR.Google Scholar
  34. Rouse, H. (1959). Advanced mechanics of fluids. New York: Wiley and Sons.zbMATHGoogle Scholar
  35. Savage, S. B., & Hutter, K. (1989). The motion of a finite mass of granular material down a rough incline. Journal of Fluid Mechanics, 199, 177–215.MathSciNetCrossRefGoogle Scholar
  36. Savage, S. B., & Hutter, K. (1991). The dynamics of avalanches of granular materials from initiation to runout, I. Analysis. Acta Mechanica, 86(1–4), 201–223.MathSciNetCrossRefGoogle Scholar
  37. Schlichting, H., & Gersten, K. (2000). Boundary layer theory. Berlin, Germany: Springer.CrossRefGoogle Scholar
  38. Serre, F. (1953). Contribution à l’étude des écoulements permanents et variables dans les canaux [Contribution to the study of steady and unsteady channel flows]. La Houille Blanche, 8(6–7), 374–388; 8(12), 830–887 (in French).Google Scholar
  39. Stansby, P. K., & Zhou, J. G. (1998). Shallow-water flow solver with non-hydrostatic pressure: 2D vertical plane problems. International Journal for Numerical Methods in Fluids, 28(3), 541–563.CrossRefGoogle Scholar
  40. Steffler, P. M., & Jin, Y. C. (1993). Depth-averaged and moment equations for moderately shallow free surface flow. Journal of Hydraulic Research, 31(1), 5–17.CrossRefGoogle Scholar
  41. Strelkoff, T. (1969). One dimensional equations of open channel flow. Journal of the Hydraulics Division, ASCE, 95(3), 861–876.Google Scholar
  42. Sturm, T. W. (2001). Open channel hydraulics. New York: McGraw-Hill.Google Scholar
  43. Toro, E. F. (2001). Shock-capturing methods for free-surface shallow flows. New York: Wiley.zbMATHGoogle Scholar
  44. Vreugdenhil, C. B. (1994). Numerical methods for shallow water flow. Dordrecht NL: Kluwer.CrossRefGoogle Scholar
  45. White, F. M. (1991). Viscous fluid flow. New York: McGraw-Hill.Google Scholar
  46. White, F. M. (2009). Fluid mechanics. New York: McGraw-Hill.Google Scholar
  47. Wu, W. (2008). Computational river dynamics. London, U.K.: Taylor and Francis.Google Scholar
  48. Yen, B. C. (1973). Open-channel flow equations revisited. Journal of the Engineering Mechanics Division, ASCE, 99(EM5), 979–1009.Google Scholar
  49. Yen, B. C. (1975). Further study on open-channel flow equations. Sonder-Forschungsbereich, 80/T/49, Universität Karlsruhe, Germany.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.University of CórdobaCórdobaSpain
  2. 2.VAW, ETH ZürichZürichSwitzerland

Personalised recommendations