Advertisement

Intelligent Situational-Awareness Architecture for Hybrid Emergency Power Systems in More Electric Aircraft

  • Gihan J. MendisEmail author
  • Mohasinina Binte Kamal
  • Jin Wei
Chapter
Part of the Advanced Sciences and Technologies for Security Applications book series (ASTSA)

Abstract

In this chapter, we exploit the deep learning and adaptive neuro-fuzzy inference system (ANFIS) techniques to develop an intelligent situational awareness system for energy management systems of the emergency hybrid auxiliary power unit (APU) for more-electric aircrafts. Our proposed security control strategy consists of two main mechanisms: (1) deep learning-based attack detection scheme that explores the techniques of convolutional neural networks, deconvolutional neural networks, and recurrent neural networks and (2) adaptive neuro-fuzzy inference system (ANFIS)-based estimation method to calculate the true values of the compromised data. In this chapter, we also present some simulation results to illustrate the effectiveness of our proposed method in detecting the cyber-attacks, such as false data injection (FDI) attacks, and mitigating the impact of the cyber-attacks in the energy management for the hybrid APUs in more-electric aircrafts.

Keywords

More-electrical aircraft Hybrid emergency power systems Situational-awareness architecture Neuro-fuzzy inference system (ANFIS) Deep learning Cyber-attack detection 

References

  1. 1.
    Rosero J, Ortega J, Aldabas E, Romeral L (2007) Moving towards a more electric aircraft. IEEE Aerosp Electron Syst Mag 22(3):3–9CrossRefGoogle Scholar
  2. 2.
    Wu S, Li Y (2014) Fuel cell applications on more electrical aircraft. In: 2014 17th International Conference on Electrical Machines and Systems (ICEMS). IEEE, pp 198–201Google Scholar
  3. 3.
    Roboam X, Langlois O, Piquet H, Morin B, Turpin C (2011) Hybrid power generation system for aircraft electrical emergency network. IET Electr Syst Transp 1(4):148–155CrossRefGoogle Scholar
  4. 4.
    Ziaeinejad S, Sangsefidi Y, Mehrizi-Sani A (2016) Fuel cell-based auxiliary power unit: EMS, sizing, and current estimator-based controller. IEEE Trans Veh Technol 65(6):4826–4835CrossRefGoogle Scholar
  5. 5.
    Akhave A, Chrysakis G, Gupta A (2014) Design and evaluation of a turbo-generator as an auxiliary power unit for hybrid vehicles. In: 5th IET Hybrid and Electric Vehicles Conference (HEVC 2014), 5 November 2014, IET, pp 1–7Google Scholar
  6. 6.
    Desideri U, Giglioli R, Lutzemberger G, Pasini G, Poli D (2017) Auxiliary power units for pleasure boats. In: 2017 6th International Conference on Clean Electrical Power (ICCEP). IEEE, pp 650–655Google Scholar
  7. 7.
    Rajashekara K, Jia Y (2016) An induction generator based auxiliary power unit for power generation and management system for more electric aircraft. In: 2016 IEEE Energy Conversion Congress and Exposition (ECCE). IEEE, pp 1–7Google Scholar
  8. 8.
    Waheed M, Cheng M (2017) A system for real-time monitoring of cybersecurity events on aircraft. In: 2017 IEEE/AIAA 36th Digital Avionics Systems Conference (DASC). IEEE, pp 1–3Google Scholar
  9. 9.
    Kumar SA, Xu B (2017) Vulnerability assessment for security in aviation cyber-physical systems. In: 2017 IEEE 4th International Conference on Cyber Security and Cloud Computing (CSCloud). IEEE, pp 145–150Google Scholar
  10. 10.
    Huang X, Dong J (2017) Adaptive optimization deception attack on remote state estimator of aero-engine. In: 2017 29th Chinese Control and Decision Conference (CCDC). IEEE, pp 5849–5854Google Scholar
  11. 11.
    Motapon SN, Dessaint L-A, Al-Haddad K (2014) A robust H 2-consumption-minimization-based energy management strategy for a fuel cell hybrid emergency power system of more electric aircraft. IEEE Trans Ind Electron 61(11):6148–6156CrossRefGoogle Scholar
  12. 12.
    Garcia P, Fernandez LM, Garcia CA, Jurado F (2010) Energy management system of fuel-cell-battery hybrid tramway. IEEE Trans Ind Electron 57(12):4013–4023CrossRefGoogle Scholar
  13. 13.
    Thounthong P, Raël S, Davat B (2007) Control strategy of fuel cell and supercapacitors association for a distributed generation system. IEEE Trans Ind Electron 54(6):3225–3233CrossRefGoogle Scholar
  14. 14.
    Li C-Y, Liu G-P (2009) Optimal fuzzy power control and management of fuel cell/battery hybrid vehicles. J Power Sources 192(2):525–533MathSciNetCrossRefGoogle Scholar
  15. 15.
    Vural B, Boynuegri A, Nakir I, Erdinc O, Balikci A, Uzunoglu M, Gorgun H, Dusmez S (2010) Fuel cell and ultra-capacitor hybridization: a prototype test bench based analysis of different energy management strategies for vehicular applications. Int J Hydrog Energy 35(20):11161–11171CrossRefGoogle Scholar
  16. 16.
    Rodatz P, Paganelli G, Sciarretta A, Guzzella L (2005) Optimal power management of an experimental fuel cell/supercapacitor-powered hybrid vehicle. Control Eng Pract 13(1):41–53CrossRefGoogle Scholar
  17. 17.
    Greenwell W, Vahidi A (2010) Predictive control of voltage and current in a fuel cell–ultracapacitor hybrid. IEEE Trans Ind Electron 57(6):1954–1963CrossRefGoogle Scholar
  18. 18.
    Hubel DH, Wiesel TN (1968) Receptive fields and functional architecture of monkey striate cortex. J Physiol 195(1):215–243CrossRefGoogle Scholar
  19. 19.
    Wei Y, Xia W, Lin M, Huang J, Ni B, Dong J, Zhao Y, Yan S (2016) HCP: a flexible CNN framework for multi-label image classification. IEEE Trans Pattern Anal Mach Intell 38(9):1901–1907CrossRefGoogle Scholar
  20. 20.
    Dong C, Loy CC, He K, Tang X (2016) Image super-resolution using deep convolutional networks. IEEE Trans Pattern Anal Mach Intell 38(2):295–307CrossRefGoogle Scholar
  21. 21.
    He K, Zhang X, Ren S, Sun J (2015) Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Trans Pattern Anal Mach Intell 37(9):1904–1916CrossRefGoogle Scholar
  22. 22.
    Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp 1097–1105Google Scholar
  23. 23.
    Abdullah, Hasan MS (2017) An application of pre-trained CNN for image classification. In: 2017 20th International Conference of Computer and Information Technology (ICCIT), pp 1–6Google Scholar
  24. 24.
    Mondal M, Mondal P, Saha N, Chattopadhyay P (2017) Automatic number plate recognition using CNN based self synthesized feature learning. In: 2017 IEEE Calcutta Conference (CALCON), pp 378–381Google Scholar
  25. 25.
    Zhang J, Li Y, Yin J (2017) Modulation classification method for frequency modulation signals based on the time–frequency distribution and CNN. IET Radar Sonar Navig 12:244–249CrossRefGoogle Scholar
  26. 26.
    Savigny J, Purwarianti A (2017) Emotion classification on youtube comments using word embedding. In: 2017 International Conference on Advanced Informatics, Concepts, Theory, and Applications (ICAICTA), pp 1–5Google Scholar
  27. 27.
    Ji S, Xu W, Yang M, Yu K (2013) 3D convolutional neural networks for human action recognition. IEEE Trans Pattern Anal Mach Intell 35(1):221–231CrossRefGoogle Scholar
  28. 28.
    Gudelek MU, Boluk SA, Ozbayoglu AM (2017) A deep learning based stock trading model with 2-D CNN trend detection. In: 2017 IEEE Symposium Series on Computational Intelligence (SSCI), pp 1–8Google Scholar
  29. 29.
    Kim Y (2014) Convolutional neural networks for sentence classification. arXiv preprint arXiv:1408.5882Google Scholar
  30. 30.
    Kalchbrenner N, Grefenstette E, Blunsom P (2014) A convolutional neural network for modelling sentences. arXiv preprint arXiv:1404.2188Google Scholar
  31. 31.
    Dos Santos CN, Gatti M (2014) Deep convolutional neural networks for sentiment analysis of short texts. In: COLING, pp 69–78Google Scholar
  32. 32.
    Abdel-Hamid O, Mohamed A-R, Jiang H, Penn G (2012) Applying convolutional neural networks concepts to hybrid NN-HMM model for speech recognition. In: 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, pp 4277–4280Google Scholar
  33. 33.
    Kuen J, Wang Z, Wang G (2016) Recurrent attentional networks for saliency detection. arXiv preprint arXiv:1604.03227Google Scholar
  34. 34.
    Liu N, Han J (2016) DHSNet: deep hierarchical saliency network for salient object detection. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, pp 678–686Google Scholar
  35. 35.
    Badrinarayanan V, Handa A, Cipolla R (2015) SegNet: a deep convolutional encoder-decoder architecture for robust semantic pixel-wise labelling. arXiv preprint arXiv:1505.07293Google Scholar
  36. 36.
    Yang J, Price B, Cohen S, Lee H, Yang M-H (2016) Object contour detection with a fully convolutional encoder-decoder network. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, pp 193–202Google Scholar
  37. 37.
    Noh H, Hong S, Han B (2015) Learning deconvolution network for semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision, pp 1520–1528Google Scholar
  38. 38.
    Elman JL (1990) Finding structure in time. Cogn Sci 14(2):179–211CrossRefGoogle Scholar
  39. 39.
    Song E, Soong FK, Kang HG (2017) Effective spectral and excitation modeling techniques for LSTM-RNN-based speech synthesis systems. IEEE/ACM Trans Audio Speech Lang Process 25(11):2152–2161CrossRefGoogle Scholar
  40. 40.
    Jia G, Lu Y, Lu W, Shi Y, Yang J (2017) Verification method for Chinese aviation radiotelephony readbacks based on LSTM-RNN. Electron Lett 53(6):401–403CrossRefGoogle Scholar
  41. 41.
    Gelly G, Gauvain JL (2018) Optimization of RNN-based speech activity detection. IEEE/ACM Trans Audio Speech Lang Process 26(3):646–656CrossRefGoogle Scholar
  42. 42.
    Sun L, Su T, Zhou S, Yu L (2017) GMU: a novel RNN neuron and its application to handwriting recognition. In 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR), vol 01, pp 1062–1067Google Scholar
  43. 43.
    Li W, Wen L, Chang MC, Lim SN, Lyu S (2017) Adaptive RNN tree for large-scale human action recognition. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp 1453–1461Google Scholar
  44. 44.
    Hsu HW, Ding JJ (2017) FasterMDNet: learning model adaptation by RNN in tracking-by-detection based visual tracking. In: 2017 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC), pp 657–660Google Scholar
  45. 45.
    Jang J-S (1993) ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans Syst Man Cybern 23(3):665–685CrossRefGoogle Scholar
  46. 46.
    Motapon SN, Dessaint LA, Al-Haddad K (2014) A comparative study of energy management schemes for a fuel-cell hybrid emergency power system of more-electric aircraft. IEEE Trans Ind Electron 61(3):1320–1334CrossRefGoogle Scholar
  47. 47.
    Michon M, Duarte J, Hendrix M, Simoes MG (2004) A three-port bi-directional converter for hybrid fuel cell systems. In: 2004 IEEE 35th Annual Power Electronics Specialists Conference, PESC’04, vol 6. IEEE, pp 4736–4742Google Scholar
  48. 48.
    Sak H, Senior A, Beaufays F (2014) Long short-term memory recurrent neural network architectures for large scale acoustic modeling. In: Fifteenth Annual Conference of the International Speech Communication AssociationGoogle Scholar
  49. 49.
    Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural Comput 9(8):1735–1780CrossRefGoogle Scholar
  50. 50.
    He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)Google Scholar
  51. 51.
    Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, Corrado GS, Davis A, Dean J, Devin M et al (2016) Tensorflow: large-scale machine learning on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Gihan J. Mendis
    • 1
    Email author
  • Mohasinina Binte Kamal
    • 1
  • Jin Wei
    • 1
  1. 1.The University of AkronAkronUSA

Personalised recommendations