• Willi Freeden
  • Clemens Heine
  • M. Zuhair Nashed
Part of the Lecture Notes in Geosystems Mathematics and Computing book series (LNGMC)


Mathematics (from Greek \( \mu \acute {\alpha } \vartheta \eta \mu \alpha \) “knowledge, learning”) intends to study topics as quantity, structure, space, and change. Correspondingly, \( \gamma \epsilon \omega \mu \acute {\alpha } \vartheta \eta \mu \alpha \) (geomathematics) is \( \mu \acute {\alpha } \vartheta \eta \mu \alpha \) (mathematics) concerned with geoscientific obligations. In our times, geomathematics is thought of being a very young science and a modern area in the realms of mathematics.


  1. 2.
    Agterberg, F.P: Geomathematics. Elsevier Scientific Publishing Company, Rotterdam (1974)zbMATHGoogle Scholar
  2. 4.
    Backus, G.E., Gilbert, F.: Numerical applications of a formalism for geophysical inverse problems. Geophys. J. R. Astron. Soc. 13, 247–276 (1967)CrossRefGoogle Scholar
  3. 6.
    Backus, G.E., Gilbert, F.: Uniqueness in the inversion of inaccurate gross Earth data. Philos. Trans. R. Soc. Lond. A 266, 123–192 (1970)MathSciNetCrossRefGoogle Scholar
  4. 14.
    Cohen, L.: Time-Frequency Analysis. Prentice Hall, Englewood Clifffs (1995)Google Scholar
  5. 15.
    Daubechies, I.: Ten Lectures on Wavelets. In: CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 61. SIAM, Philadelphia (1992)Google Scholar
  6. 17.
    de Laplace, P.S.: Theorie des attractions des sphéroides et de la figure des planètes. Mèm. de l’Acad., Paris (1785)Google Scholar
  7. 18.
    Eggermont, P.N., LaRiccia, V., Nashed, M.Z.: Noise Models for Ill-Posed Problems. In: Freeden, W., Nashed, M.Z., Sonar, T. (eds.) Handbook of Geomathematics, vol. 2, 2nd edn., pp. 1633–1658. Springer, New York (2015)CrossRefGoogle Scholar
  8. 19.
    Engl, H.W., Hanke, M., Neubauer, A.: Regularization of Inverse Problems. Kluwer, Dordrecht (1996)CrossRefGoogle Scholar
  9. 21.
    Freeden, W.: On spherical spline interpolation and approximation. Math. Methods Appl. Sci. 3, 551–575 (1981)MathSciNetCrossRefGoogle Scholar
  10. 22.
    Freeden, W.: On approximation by harmonic splines. Manuscr. Geodaet. 6, 193–244 (1981)zbMATHGoogle Scholar
  11. 23.
    Freeden, W.: A spline interpolation method for solving boundary value problems of potential theory from discretely given data. Numer. Methods Partial Differ. Equ. 3, 375–398 (1987)MathSciNetCrossRefGoogle Scholar
  12. 24.
    Freeden, W.: The Uncertainty Principle and Its Role in Physical Geodesy. In: W. Freeden (ed.) Progress in Geodetic Science at GW 98, pp. 225–236. Shaker, Aachen (1998)Google Scholar
  13. 25.
    Freeden, W.: Multiscale Modelling of Spaceborne Geodata. B.G. Teubner, Stuttgart (1999)zbMATHGoogle Scholar
  14. 26.
    Freeden, W.: Geomathematik, was ist das überhaupt? Jahresb. Deutsch. Mathem. Vereinigung (DMV) 111, 125–152 (2009)zbMATHGoogle Scholar
  15. 27.
    Freeden, W.: Geomathematics: Its Role, Its Aim, and Its Potential. In: Freeden, W., Nashed, M.Z., Sonar, T. (eds.) Handbook of Geomathematics, vol. 1, 2nd edn, pp. 3–78. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  16. 30.
    Freeden, W., Gerhards, C.: Geomathematically Oriented Potential Theory. Chapman and Hall/CRC Press, Boca Raton/London (2013)zbMATHGoogle Scholar
  17. 32.
    Freeden, W., Gutting, M.: Integration and Cubature Methods - A Geomathematically Oriented Course. Chapman and Hall/CRC Press, Boca Raton/London/New York (2018)zbMATHGoogle Scholar
  18. 33.
    Freeden, W., Maier, T.: On multiscale denoising of spherical functions: Basic theory and numerical aspects. Electron. Trans. Numer. Anal. 14, 40–62 (2002)MathSciNetzbMATHGoogle Scholar
  19. 34.
    Freeden, W., Maier, T.: Spectral and multiscale signal-to-noise thresholding of spherical vector fields. Comput. Geosci. 7, 215–250 (2003)MathSciNetCrossRefGoogle Scholar
  20. 35.
    Freeden, W., Michel, V.: Multiscale Potential Theory (With Applications to Geoscience). Birkhäuser, Boston (2004)CrossRefGoogle Scholar
  21. 36.
    Freeden, W., Nashed, M.Z.: Multivariate Hardy-type lattice point summation and Shannon-type sampling. GEM Int. J. Geomath. 6, 163–249 (2015)MathSciNetCrossRefGoogle Scholar
  22. 37.
    Freeden, W., Nashed, M.Z.: Operator-theoretic and regularization approaches to ill-posed problems. GEM Int. J. Geomath. 9, 1–115 (2017)MathSciNetCrossRefGoogle Scholar
  23. 38.
    Freeden, W., Nashed, M.Z.: From Gaussian Circle Problem to Multivariate Shannon Sampling. In: Nashed, M.Z., Li, X. (eds.) Contemporary Mathematics and Its Applications. Frontiers in Orthogonal Polynomials and q-Series, vol. 1, pp. 213–238 (2017)Google Scholar
  24. 40.
    Freeden, W., Nashed, M.Z.: Ill-Posed Problems: Operator Methodologies of Resolution and Regularization. In: Freeden, W., Nashed, M.Z. (eds.) Handbook of Mathematical Geodesy. Geosystems Mathematics, pp. 201–314. Springer, Basel (2018)CrossRefGoogle Scholar
  25. 41.
    Freeden, W., Nashed, M.Z.: Gravimetry As an Ill-Posed Problem in Mathematical Geodesy. In: Freeden, W., Nashed, M.Z. (eds.) Handbook of Mathematical Geodesy. Geosystems Mathematics, pp. 641–686. Springer, Basel (2018)CrossRefGoogle Scholar
  26. 45.
    Freeden, W., Sansó, F.: Geodesy and Mathematics: Interactions, Acquisitions, and Open Problems. In: International Association of Geodesy Symposia (IAGS), IX Hotine-Marussi Symposium Rome. Springer, Heidelberg (submitted, 2019). Preprint (2019)Google Scholar
  27. 46.
    Freeden, W., Schreiner, M.: Spherical Functions of Mathematical Geosciences – A Scalar, Vectorial, and Tensorial Setup. Springer, Heidelberg (2009)zbMATHGoogle Scholar
  28. 47.
    Freeden, W., Schreiner, M.: Mathematical Geodesy: Its Role, Its Potential and Its Perspective. In: Freeden, W., Rummel, R. (eds.) Handbuch der Geodäsie. Springer Reference Naturwissenschaften. Springer, Cham (2019).
  29. 49.
    Freeden, W., Gervens, T., Schreiner, M.: Constructive Approximation on the Sphere (With Applications to Geomathematics). Oxford Science Publications, Clarendon/Oxford (1998)zbMATHGoogle Scholar
  30. 50.
    Freeden, W., Michel, V., Simons, F.J.: Spherical Harmonics Based Special Function Systems and Constructive Approximation Methods. In: Freeden, W., Nashed, M.Z. (eds.) Handbook of Mathematical Geodesy. Geosystems Mathematics, pp. 753–820. Springer, Basel (2018)CrossRefGoogle Scholar
  31. 51.
    Freeden, W., Nashed, M.Z., Schreiner, M.: Spherical Sampling. Geosystems Mathematics. Springer, Basel (2018)CrossRefGoogle Scholar
  32. 53.
    Gauss, C.F.: Allgemeine Theorie des Erdmagnetismus. Resultate aus den Beobachtungen des magnetischen Vereins (1838)Google Scholar
  33. 55.
    Grafarend, E.W., Klapp, M., Martinec, Z.: Spacetime Modelling of the Earth’s Gravity Field by Ellipsoidal Harmonics. In: Freeden, W., Nashed, M.Z., Sonar, T. (eds.) Handbook of Geomathematics, vol. 1, 1st. edn., pp. 159–253. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  34. 70.
    Jansen, M., Oonincx, P.: Second Generation Wavelets and Applications. Springer, Berlin (2005)Google Scholar
  35. 72.
    Legendre, A.M.: Recherches sur l’attraction des sphèroides homogènes. Mèm. math. phys. près. à l’Acad. Aci. par. divers savantes 10, 411–434 (1785)Google Scholar
  36. 74.
    Louis, A.K.: Inverse und schlecht gestellte Probleme. Teubner, Stuttgart (1989)CrossRefGoogle Scholar
  37. 75.
    Mallat, S.: Applied Mathematics Meets Signal Processing. In: Proceedings of the International Congress of Mathematicians, Berlin 1998, vol. I, pp. 319–338. Documenta Mathematica, Bielefeld (1998)Google Scholar
  38. 82.
    Michel, V.: A multiscale method for the gravimetry problem: theoretical and numerical aspects of harmonic and anharmonic modelling. Ph.D. thesis, University of Kaiserslautern, Mathematics Department, Geomathematics Group, Shaker, Aachen (1999)Google Scholar
  39. 83.
    Michel, V.: Lectures on Constructive Approximation. Applied and Numerical Harmonic Analysis. Birkhäuser, New York (2013)CrossRefGoogle Scholar
  40. 84.
    Michel, V., Fokas, A.S.: A unified approach to various techniques for the non-uniqueness of the inverse gravimetric problem and wavelet-based methods. Inverse Prob. 24 (2008). MathSciNetCrossRefGoogle Scholar
  41. 89.
    Müller, C., Aspects of Differential Equations in Mathematical Physics. In: Langer, R.E. (ed.) Partial Differential Equations and Continuum Mechanics, pp. 3–8. The University of Wisconsin Press, Madison (1961)Google Scholar
  42. 91.
    Nashed, M.Z.: New Applications of Generalized Inverses in System and Control Theory. In: Thomas, J.B. (ed.) Proceedings of 1980 Conference on Information Sciences and Systems, Princeton, pp. 353–358 (1980)Google Scholar
  43. 92.
    Nashed, M.Z.: Operator-theoretic and computational approaches to ill-posed problems with applications to antenna theory. IEEE Trans. Antennas Propag. 29, 220–231 (1981)MathSciNetCrossRefGoogle Scholar
  44. 93.
    Nashed, M.Z.: A New Approach to Classification and Regularization of Ill-Posed Operator Equations. In: Engl, H., Groetsch, C.W. (eds.) Inverse and Ill-Posed Problems, Band 4. Notes and Reports in Mathematics and Science and Engineering. Academic Press, Boston (1987)Google Scholar
  45. 94.
    Nashed, M.Z.: Inverse Problems, Moment Problems and Signal Processing: Un Menage a Trois. In: Siddiqi, A.H., Singh, R.C., Manchanda, P. (eds.) Mathematics in Science and Technology, pp. 1–19. World Scientific, New Jersey (2010)Google Scholar
  46. 99.
    Nashed, M.Z., Walter, G.G.: Reproducing kernel Hilbert space from sampling expansions. Contemp. Math. 190, 221–226 (1995)MathSciNetCrossRefGoogle Scholar
  47. 101.
    Nutz, H.: A unified setup of gravitational field observables. Ph.D. thesis, University of Kaiserslautern, Geomathematics Group, Shaker, Aachen (2002)Google Scholar
  48. 102.
    Pavlis, N.K., Holmes, S.A., Kenyon, S.C., Factor, J.K.: An Earth Gravitational Model to Degree 2160: EGM2008. General Assembly of the European Geosciences Union, Vienna (2018)Google Scholar
  49. 105.
    Potts, D., Steidl, G., Tasche, M.: Fast Fourier transforms for nonequispaced data: a tutorial, modern sampling theory. Appl. Numer. Harmon. Anal. (ACHA) 22, 247–270 (2001)Google Scholar
  50. 107.
    Rummel, R.: Spherical Spectral Properties of the Earth’s Gravitational Potential and Its First and Second Derivatives. In: Lecture Notes in Earth Science, vol. 65, pp. 359–404. Springer, Berlin (1997)Google Scholar
  51. 108.
    Rummel, R., van Gelderen, M.: Meissl scheme – spectral characteristics of physical geodesy. Manuscr. Geod. 20, 379–385 (1995)Google Scholar
  52. 110.
    Shure, L., Parker, R.L., Backus, G.E.: Harmonic splines for geomagnetic modelling. Phys. Earth Planet. Inter. 28, 215–229 (1982)CrossRefGoogle Scholar
  53. 113.
    Sonar, T.: 3000 Jahre Analysis. Springer, Berlin (2011)CrossRefGoogle Scholar
  54. 114.
    Stokes, G.G.: On the variation of gravity at the surface of the Earth. Trans. Camb. Philos. Soc. 148, 672–712 (1849)Google Scholar
  55. 115.
    Svensson, S.L.: Pseudodifferential operators: a new approach to the boundary value problems of physical geodesy. Manuscr. Geod. 8, 1–40 (1983)zbMATHGoogle Scholar
  56. 119.
    Wahba, G.: Spline interpolation and smoothing on the sphere. SIAM J. Sci. Stat. Comput. 2, 5–16. Also: Errata SIAM J. Sci. Stat. Comput. 3, 385–386 (1981)Google Scholar
  57. 120.
    Wahba, G.: Spline Models for Observational Data. In: CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 59. SIAM, Philadelphia (1990)Google Scholar
  58. 122.
    Xia, X.G., Nashed, M.Z.: The Backus-Gilbert method for signals in reproducing Hilbert spaces and wavelet subspaces. Inverse Prob. 10, 785–804 (1994)MathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Willi Freeden
    • 1
  • Clemens Heine
    • 2
  • M. Zuhair Nashed
    • 3
  1. 1.Mathematics DepartmentUniversity of KaiserslauternKaiserslauternGermany
  2. 2.Executive EditorSpringer NatureHeidelbergGermany
  3. 3.Mathematics DepartmentUniversity of Central FloridaOrlandoUSA

Personalised recommendations