Combined Variant of Hybrid Micromachining Processes

  • Sumit BhowmikEmail author
  • Divya Zindani
Part of the SpringerBriefs in Applied Sciences and Technology book series (BRIEFSAPPLSCIENCES)


In a combined variant of hybrid micromachining processes, the total material removal rate is accrued from the micromachining processes constituting the combined arrangement. The individual constituents simultaneously effect the machining zone. A number of advantages are associated with the combined hybrid micromachining processes such as enhanced material removal rate, higher dimensional tolerances, etc. The present chapter highlights and discusses some of the least explored combined hybrid micromachining processes: micro-electrochemical discharge machining, simultaneous micro-electrical discharge machining, and micro-electrochemical machining and micro-electrochemical machining and micro-mechanical grinding, micro-electrical discharge machining and laser micro-drilling and jet electrochemical machining and micro-EDM and electrorheological fluid-assisted polishing.


Laser micro-drilling Jet electrochemical machining Micro-electrochemical machining Micro-mechanical grinding Micro-electrochemical discharge machining 


  1. X.D. Cao, B.H. Kim, C.N. Chu, Micro-structuring of glass with features less than 100 μm by electrochemical discharge machining. Precis. Eng. 33(4), 459–465 (2009)CrossRefGoogle Scholar
  2. X.D. Cao, B.H. Kim, C.N. Chu, Hybrid micromachining of glass using ECDM and micro grinding. Int. J. Precis. Eng. Manuf. 14(1), 5–10 (2013)CrossRefGoogle Scholar
  3. C.P. Cheng, K.L. Wu, C.C. Mai, C.K. Yang, Y.S. Hsu, B.H. Yan, Study of gas film quality in electrochemical discharge machining. Int. J. Mach. Tools Manuf. 50(8), 689–697 (2010a)CrossRefGoogle Scholar
  4. C.P. Cheng, K.L. Wu, C.C. Mai, Y.S. Hsu, B.H. Yan, Magnetic field-assisted electrochemical discharge machining. J. Micromech. Microeng. 20(7), 075019 (2010b)CrossRefGoogle Scholar
  5. M. Coteaţă, H.P. Schulze, L. Slătineanu, Drilling of difficult-to-cut steel by electrochemical discharge machining. Mater. Manuf. Processes 26(12), 1466–1472 (2011)CrossRefGoogle Scholar
  6. K. Furutani, H. Maeda, Machining a glass rod with a lathe-type electro-chemical discharge machine. J. Micromech. Microeng. 18(6), 065006 (2008)CrossRefGoogle Scholar
  7. M.S. Han, B.K. Min, S.J. Lee, Geometric improvement of electrochemical discharge micro-drilling using an ultrasonic-vibrated electrolyte. J. Micromech. Microeng. 19(6), 065004 (2009)CrossRefGoogle Scholar
  8. Z. Hua, X. Jiawen, Modeling and experimental investigation of laser drilling with jet electrochemical machining. Chin. J. Aeronaut. 23(4), 454–460 (2010)CrossRefGoogle Scholar
  9. S.F. Huang, Y. Liu, J. Li, H.X. Hu, L.Y. Sun, Electrochemical discharge machining micro-hole in stainless steel with tool electrode high-speed rotating. Mater. Manuf. Processes 29(5), 634–637 (2014)CrossRefGoogle Scholar
  10. M. Jalali, P. Maillard, R. Wüthrich, Toward a better understanding of glass gravity-feed micro-hole drilling with electrochemical discharges. J. Micromech. Microeng. 19(4), 045001 (2009)CrossRefGoogle Scholar
  11. D.J. Kim, Y. Ahn, S.H. Lee, Y.K. Kim, Voltage pulse frequency and duty ratio effects in an electrochemical discharge microdrilling process of Pyrex glass. Int. J. Mach. Tools Manuf 46(10), 1064–1067 (2006)CrossRefGoogle Scholar
  12. H. Krötz, R. Roth, K. Wegener, Experimental investigation and simulation of heat flux into metallic surfaces due to single discharges in micro-electrochemical arc machining (micro-ECAM). Int. J. Adv. Manuf. Technol. 68(5–8), 1267–1275 (2013)CrossRefGoogle Scholar
  13. A.V. Kulkarni, V.K. Jain, K.A. Misra, Electrochemical spark micromachining (microchannels and microholes) of metals and non-metals. Int. J. Manuf. Technol. Manage. 22(2), 107–123 (2011)CrossRefGoogle Scholar
  14. D. Landolt, P.F. Chauvy, O. Zinger, Electrochemical micromachining, polishing and surface structuring of metals: fundamental aspects and new developments. Electrochim. Acta 48(20–22), 3185–3201 (2003)CrossRefGoogle Scholar
  15. L. Li, C. Diver, J. Atkinson, R. Giedl-Wagner, H.J. Helml, Sequential laser and EDM micro-drilling for next generation fuel injection nozzle manufacture. CIRP Ann. Manuf. Technol. 55(1), 179–182 (2006)CrossRefGoogle Scholar
  16. P. Lijo, S.S. Hiremath, Characterisation of micro channels in electrochemical discharge machining process, in Applied Mechanics and Materials, vol. 490 (Trans Tech Publications, 2014), pp. 238–242Google Scholar
  17. H.S. Liu, B.H. Yan, C.L. Chen, F.Y. Huang, Application of micro-EDM combined with high-frequency dither grinding to micro-hole machining. Int. J. Mach. Tools Manuf. 46(1), 80–87 (2006)CrossRefGoogle Scholar
  18. P. Maillard, B. Despont, H. Bleuler, R. Wüthrich, Geometrical characterization of micro-holes drilled in glass by gravity-feed with spark assisted chemical engraving (SACE). J. Micromech. Microeng. 17(7), 1343 (2007)CrossRefGoogle Scholar
  19. A. Manna, V. Narang, A study on micro machining of e-glass–fibre–epoxy composite by ECSM process. Int. J. Adv. Manuf. Technol. 61(9–12), 1191–1197 (2012)CrossRefGoogle Scholar
  20. T. Masuzawa, State of the art of micromachining. CIRP Ann. Manuf. Technol. 49(2), 473–488 (2000)CrossRefGoogle Scholar
  21. M.D. Nguyen, M. Rahman, Y. San Wong, Enhanced surface integrity and dimensional accuracy by simultaneous micro-ED/EC milling. CIRP Ann. Manuf. Technol. 61(1), 191–194 (2012a)CrossRefGoogle Scholar
  22. M.D. Nguyen, M. Rahman, Y. San Wong, Simultaneous micro-EDM and micro-ECM in low-resistivity deionized water. Int. J. Mach. Tools Manuf. 54, 55–65 (2012b)CrossRefGoogle Scholar
  23. M.D. Nguyen, M. Rahman, Y. San Wong, Modeling of radial gap formed by material dissolution in simultaneous micro-EDM and micro-ECM drilling using deionized water. Int. J. Mach. Tools Manuf. 66, 95–101 (2013a)CrossRefGoogle Scholar
  24. M.D. Nguyen, M. Rahman, Y. San Wong, Transitions of micro-EDM/SEDCM/micro-ECM milling in low-resistivity deionized water. Int. J. Mach. Tools Manuf. 69, 48–56 (2013b)CrossRefGoogle Scholar
  25. M.M. Okasha, P.T. Mativenga, N. Driver, L. Li, Sequential laser and mechanical micro-drilling of Ni superalloy for aerospace application. CIRP Ann. 59(1), 199–202 (2010)CrossRefGoogle Scholar
  26. L. Paul, S.S. Hiremath, Response surface modelling of micro holes in electrochemical discharge machining process. Proc. Eng. 64, 1395–1404 (2013)CrossRefGoogle Scholar
  27. M.R. Razfar, J. Ni, A. Behroozfar, S. Lan, An investigation on electrochemical discharge micro-drilling of glass, in ASME 2013 International Manufacturing Science and Engineering Conference collocated with the 41st North American Manufacturing Research Conference (American Society of Mechanical Engineers, 2013), p. V002T03A013Google Scholar
  28. B.R. Sarkar, B. Doloi, B. Bhattacharyya, Parametric analysis on electrochemical discharge machining of silicon nitride ceramics. Int. J. Adv. Manuf. Technol. 28(9–10), 873–881 (2006)CrossRefGoogle Scholar
  29. B.R. Sarkar, B. Doloi, B. Bhattacharyya, Investigation into the influences of the power circuit on the micro-electrochemical discharge machining process. Proc. Inst. Mech. Eng., Part B: J. Eng. Manuf. 223(2), 133–144 (2009)CrossRefGoogle Scholar
  30. T.B. Thoe, D.K. Aspinwall, N. Killey, Combined ultrasonic and electrical discharge machining of ceramic coated nickel alloy. J. Mater. Process. Technol. 92, 323–328 (1999)CrossRefGoogle Scholar
  31. Y.Y. Tsai, C.H. Tseng, C.K. Chang, Development of a combined machining method using electrorheological fluids for EDM. J. Mater. Process. Technol. 201(1–3), 565–569 (2008)CrossRefGoogle Scholar
  32. Z.Y. Wang, K.P. Rajurkar, J. Fan, S. Lei, Y.C. Shin, G. Petrescu, Hybrid machining of Inconel 718. Int. J. Mach. Tools Manuf. 43(13), 1391–1396 (2003)CrossRefGoogle Scholar
  33. J. West, A. Jadhav, ECDM methods for fluidic interfacing through thin glass substrates and the formation of spherical microcavities. J. Micromech. Microeng. 17(2), 403 (2007)CrossRefGoogle Scholar
  34. R. Wüthrich, V. Fascio, Machining of non-conducting materials using electrochemical discharge phenomenon—an overview. Int. J. Mach. Tools Manuf. 45(9), 1095–1108 (2005)CrossRefGoogle Scholar
  35. R. Wüthrich, L.A. Hof, The gas film in spark assisted chemical engraving (SACE)—a key element for micro-machining applications. Int. J. Mach. Tools Manuf. 46(7–8), 828–835 (2006)CrossRefGoogle Scholar
  36. R. Wüthrich, L.A. Hof, A. Lal, K. Fujisaki, H. Bleuler, P. Mandin, G. Picard, Physical principles and miniaturization of spark assisted chemical engraving (SACE). J. Micromech. Microeng. 15(10), S268 (2005)CrossRefGoogle Scholar
  37. Q. Yin, B. Wang, Y. Zhang, F. Ji, G. Liu, Research of lower tool electrode wear in simultaneous EDM and ECM. J. Mater. Process. Technol. 214(8), 1759–1768 (2014)CrossRefGoogle Scholar
  38. H. Zhang, J. Xu, Laser drilling assisted with jet electrochemical machining for the minimization of recast and spatter. Int. J. Adv. Manuf. Technol. 62(9–12), 1055–1062 (2012)CrossRefGoogle Scholar
  39. H. Zhang, J. Xu, J. Wang, Investigation of a novel hybrid process of laser drilling assisted with jet electrochemical machining. Opt. Lasers Eng. 47(11), 1242–1249 (2009)CrossRefGoogle Scholar
  40. Y.W. Zhao, D.X. Geng, X.M. Liu, Study on combined process of micro-EDM and electrorheological fluid-assisted polishing. In Advanced Materials Research, vol. 418 (Trans Tech Publications, 2012), pp. 1167–1170Google Scholar
  41. Z.P. Zheng, W.H. Cheng, F.Y. Huang, B.H. Yan, 3D microstructuring of Pyrex glass using the electrochemical discharge machining process. J. Micromech. Microeng. 17(5), 960 (2007)CrossRefGoogle Scholar
  42. Z.P. Zheng, J.K. Lin, F.Y. Huang, B.H. Yan, Improving the machining efficiency in electrochemical discharge machining (ECDM) microhole drilling by offset pulse voltage. J. Micromech. Microeng. 18(2), 025014 (2008)CrossRefGoogle Scholar
  43. D. Zhu, Y.B. Zeng, Z.Y. Xu, X.Y. Zhang, Precision machining of small holes by the hybrid process of electrochemical removal and grinding. CIRP Ann. Manuf. Technol. 60(1), 247–250 (2011)CrossRefGoogle Scholar
  44. J.D.A. Ziki, R. Wüthrich, Forces exerted on the tool-electrode during constant-feed glass micro-drilling by spark assisted chemical engraving. Int. J. Mach. Tools Manuf. 73, 47–54 (2013)CrossRefGoogle Scholar
  45. J.D.A. Ziki, T.F. Didar, R. Wüthrich, Micro-texturing channel surfaces on glass with spark assisted chemical engraving. Int. J. Mach. Tools Manuf. 57, 66–72 (2012)CrossRefGoogle Scholar

Copyright information

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringNational Institute of Technology SilcharSilcharIndia

Personalised recommendations