Electrorheological Fluid-Assisted Micro-USM

  • Sumit BhowmikEmail author
  • Divya Zindani
Part of the SpringerBriefs in Applied Sciences and Technology book series (BRIEFSAPPLSCIENCES)


One of the effective nonconventional machining processes is ultrasonic machining (USM) that can machine brittle as well as hard material. An ultrasonic-induced vibrating tool pressurizes the abrasive grains towards the target material and therefore removes the material. Machining precision is one of the major factors that is very critical in achieving parts with high-dimensional tolerances. Production of micro-holes is one of the major applications of micro-USM process. However, chippings produced at the edge of the hole adversely impacts the machining precision. Chippings can be taken care off by employing electrorheological fluid in tandem with the micro-USM process and therefore giving birth to a hybrid micromachining process, i.e., electrorheological fluid-assisted micro-USM. This chapter briefs the audience with principles of electrorheological fluid-assisted micro-USM process.


Micro-USM Chippings Electrorheological fluid Chemical-assisted micromachining Gas-assisted micromachining Water-assisted micromachining 


  1. J.J. Allen, Micro Electro Mechanical System Design (CRC Press, 2005)Google Scholar
  2. J.P. Choi, B.H. Jeon, B.H. Kim, Chemical-assisted ultrasonic machining of glass. J. Mater. Process. Technol. 191(1–3), 153–156 (2007)CrossRefGoogle Scholar
  3. K.L. Choo, Y. Ogawa, G. Kanbargi, V. Otra, L.M. Raff, R. Komanduri, Micromachining of silicon by short-pulse laser ablation in air and under water. Mater. Sci. Eng., A 372(1–2), 145–162 (2004)CrossRefGoogle Scholar
  4. T. Endo, T. Tsujimoto, K. Mitsui, Study of vibration-assisted micro-EDM—the effect of vibration on machining time and stability of discharge. Precis. Eng. 32(4), 269–277 (2008)CrossRefGoogle Scholar
  5. F.Z. Fang, K. Liu, T.R. Kurfess, G.C. Lim, Tool-based micro machining and applications in MEMS, in MEMS/NEMS (Springer, Boston, 2006), pp. 678–740Google Scholar
  6. P.J. French, P.T.J. Gennissen, P.M. Sarro, New silicon micromachining techniques for microsystems. Sens. Actuators, A 62(1–3), 652–662 (1997)CrossRefGoogle Scholar
  7. E. Gentili, L. Tabaglio, F. Aggogeri, Review on micromachining techniques, in Proceedings of the 7th International Conference on Advance Manufacturing Systems and Technology (AMST ’05) (2007), p. 486Google Scholar
  8. B. Ghahramani, Z.Y. Wang, Precision ultrasonic machining process: a case study of stress analysis of ceramic (Al2O3). Int. J. Mach. Tools Manuf. 41(8), 1189–1208 (2001)CrossRefGoogle Scholar
  9. J.C. Hung, B.H. Yan, H.S. Liu, H.M. Chow, Micro-hole machining using micro-EDM combined with electropolishing. J. Micromech. Microeng. 16(8), 1480 (2006)CrossRefGoogle Scholar
  10. D.J. Hwang, T.Y. Choi, C.P. Grigoropoulos, Liquid-assisted femtosecond laser drilling of straight and three-dimensional microchannels in glass. Appl. Phys. A 79(3), 605–612 (2004)CrossRefGoogle Scholar
  11. V. Jain, A.K. Sharma, P. Kumar, Recent Developments and Research Issues in Microultrasonic Machining (ISRN Mechanical Engineering, 2011)Google Scholar
  12. D. Jang, D. Kim, Liquid-assisted excimer laser micromaching for ablation enhancement and debris reduction. J. Laser Micro/Nanoeng. 1(3), 221–225 (2006)CrossRefGoogle Scholar
  13. J.J.J. Kaakkunen, M. Silvennoinen, K. Paivasaari, P. Vahimaa, Water-assisted femtosecond laser pulse ablation of high aspect ratio holes. Phys. Proc. 12, 89–93 (2011)CrossRefGoogle Scholar
  14. T. Kaku, T. Kuriyagawa, N. Yoshihara, Electrorheological fluid-assisted polishing of WC micro aspherical glass moulding dies. Int. J. Manuf. Technol. Manage. 9(1–2), 109–119 (2006)CrossRefGoogle Scholar
  15. S. Koshimizu, I. Iansaki, Hybrid machining of hard and brittle materials. J. Mech. Work. Technol. 17, 333–341 (1988)CrossRefGoogle Scholar
  16. D. Kremer, S.M. Saleh, S.R. Ghabrial, A. Moisan, The state of the art of ultrasonic machining. CIRP Ann. Manuf. Technol. 30(1), 107–110 (1981)CrossRefGoogle Scholar
  17. T. Kuriyagawa, Generation and countermeasure of cavitation in tool-workpiece interface during ultrasonic machining (Studies on mechanism of ultrasonic machining, 3rd report). J. Soc. Grind. Eng. 45(9), 442–447 (2001)Google Scholar
  18. T. Kuriyagawa, M. Saeki, K. Syoji, Electrorheological fluid-assisted ultra-precision polishing for small three-dimensional parts. Precis. Eng. 26(4), 370–380 (2002)CrossRefGoogle Scholar
  19. L. Li, C. Achara, Chemical assisted laser machining for the minimisation of recast and heat affected zone. CIRP Ann. Manuf. Technol. 53(1), 175–178 (2004)CrossRefGoogle Scholar
  20. H.S. Lian, Z.N. Guo, J.W. Liu, Z.G. Huang, J.F. He, Experimental study of electrophoretically assisted micro-ultrasonic machining. Int. J. Adv. Manuf. Technol. 85(9–12), 2115–2124 (2016)CrossRefGoogle Scholar
  21. K. Linoya, Powder Technology Handbook (Nikkan Kogyo Shimbun, 1989), pp. 311–312 (in Japanese)Google Scholar
  22. J.L. Liow, Mechanical micromachining: a sustainable micro-device manufacturing approach? J. Clean. Prod. 17(7), 662–667 (2009)CrossRefGoogle Scholar
  23. T. Masuzawa, State of the art of micromachining. CIRP Ann. Manuf. Technol. 49(2), 473–488 (2000)CrossRefGoogle Scholar
  24. T. Masuzawa, H.K. Tönshoff, Three-dimensional micromachining by machine tools. CIRP Ann. Manuf. Technol. 46(2), 621–628 (1997)CrossRefGoogle Scholar
  25. S. Sebastian, G. March, S. Maciej, Experimental research on electrochemically assisted microturning process, in Key Engineering Materials (2014)Google Scholar
  26. H.K. Sezer, L. Li, S. Leigh, Twin gas jet-assisted laser drilling through thermal barrier-coated nickel alloy substrates. Int. J. Mach. Tools Manuf. 49(14), 1126–1135 (2009)CrossRefGoogle Scholar
  27. R. Singh, M.J. Alberts, S.N. Melkote, Characterization and prediction of the heat-affected zone in a laser-assisted mechanical micromachining process. Int. J. Mach. Tools Manuf. 48(9), 994–1004 (2008)CrossRefGoogle Scholar
  28. X.Q. Sun, T. Masuzawa, M. Fujino, Micro ultrasonic machining and self-aligned multilayer machining/assembly technologies for 3D micromachines. In Proceedings of the IEEE, The Ninth Annual International Workshop on Micro Electro Mechanical Systems, 1996, MEMS’96. An Investigation of Micro Structures, Sensors, Actuators, Machines and Systems (IEEE, 1996), pp. 312–317Google Scholar
  29. S. Tanaka, J.I. Takagi, T. Yokosawa, N. Hasegawa, Study on ultrasonic machining of small diameter holes. J. Jpn. Soc. Abras. Technol. 49(5), 245–249 (2005)Google Scholar
  30. T. Tateishi, K. Shimada, N. Yoshihara, J.W. Yan, T. Kuriyagawa, Effect of electrorheological fluid assistance on micro ultrasonic machining, in Advanced Materials Research, vol. 69 (Trans Tech Publications. 2009), pp. 148–152CrossRefGoogle Scholar
  31. T. Tateishi, N. Yoshihara, J. Yan, T. Kuriyagawa, Study on electrorheological fluid-assisted microultrasonic machining. Int. J. Abras. Technol. 2(1), 70–82 (2008)CrossRefGoogle Scholar
  32. T.B. Thoe, D.K. Aspinwall, M.L.H. Wise, Review on ultrasonic machining. Int. J. Mach. Tools Manuf. 38(4), 239–255 (1998)CrossRefGoogle Scholar
  33. C.H. Tsai, C.C. Li, Investigation of underwater laser drilling for brittle substrates. J. Mater. Process. Technol. 209(6), 2838–2846 (2009)CrossRefGoogle Scholar
  34. L.M. Wee, E.Y.K. Ng, A.H. Prathama, H. Zheng, Micro-machining of silicon wafer in air and under water. Opt. Laser Technol. 43(1), 62–71 (2011a)CrossRefGoogle Scholar
  35. L.M. Wee, L.E. Khoong, C.W. Tan, G.C. Lim, Solvent-assisted laser drilling of silicon carbide. Int. J. Appl. Ceram. Technol. 8(6), 1263–1276 (2011b)CrossRefGoogle Scholar
  36. I. Yang, M.S. Park, C.N. Chu, Micro ECM with ultrasonic vibrations using a semi-cylindrical tool. Int. J. Precis. Eng. Manuf. 10(2), 5–10 (2009)CrossRefGoogle Scholar

Copyright information

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringNational Institute of Technology SilcharSilcharIndia

Personalised recommendations