Advertisement

Methods and Tools for Supporting the Integration of Stocks and Fisheries

  • Yannis TzitzikasEmail author
  • Yannis Marketakis
  • Nikos Minadakis
  • Michalis Mountantonakis
  • Leonardo Candela
  • Francesco Mangiacrapa
  • Pasquale Pagano
  • Costantino Perciante
  • Donatella Castelli
  • Marc Taconet
  • Aureliano Gentile
  • Giulia Gorelli
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 953)

Abstract

The collation of information for the monitoring of fish stocks and fisheries is a difficult and time-consuming task, as the information is scattered across different databases and is modelled using different formats and semantics. Our purpose is to offer a unified view of the existing stocks and fisheries information harvested from three different database sources (FIRMS, RAM and FishSource), by relying on innovative data integration and manipulation facilities. In this paper, we describe the building blocks in terms of methods and software components that are necessary for integrating stocks and fisheries data from heterogeneous data sources.

Keywords

Fish stock Fishery Semantic data integration Data publication Data normalization 

Notes

Acknowledgments

This work has received funding from the European Union’s Horizon 2020 research and innovation programme under the BlueBRIDGE project (Grant agreement No 675680).

References

  1. 1.
    Hilborn, R., Walters, C. (eds.): Quantitative Fisheries Stock Assessment: Choice, Dynamics and Uncertainty. Springer, Dordrecht (2013).  https://doi.org/10.1007/978-1-4615-3598-0CrossRefGoogle Scholar
  2. 2.
    Tzitzikas, Y., et al.: Towards a global record of stocks and fisheries. In: 8th International Conference on Information and Communication Technologies in Agriculture, Food and Environment (HAICTA 2017), Chania, Crete Island, Greece, pp. 328–340 (2017)Google Scholar
  3. 3.
    Tzitzikas, Y., et al.: Unifying Heterogeneous and Distributed Information About Marine Species Through the Top Level Ontology MarineTLO, vol. 50(1). Emerald Group Publishing Limited (2014).  https://doi.org/10.1108/prog-10-2014-0072CrossRefGoogle Scholar
  4. 4.
    Pham, M., Alse, S., Knoblock, C.A., Szekely, P.: Semantic labeling: a domain-independent approach. In: Groth, P., et al. (eds.) ISWC 2016. LNCS, vol. 9981, pp. 446–462. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-46523-4_27CrossRefGoogle Scholar
  5. 5.
    Candela, L., Castelli, D., Manzi, A., Pagano, P.: Realising virtual research environments by hybrid data infrastructures: the D4Science experience. In: International Symposium on Grids and Clouds (ISGC), vol. 210, p. 022 (2014)Google Scholar
  6. 6.
    Nedelec, C., Prado, J.: Definition and classification of fishing gear categories. FAO Fisheries Technical Paper 222 (1990)Google Scholar
  7. 7.
    Assante, M., et al.: The gCube system: delivering virtual research environments as-a-service. Future Gener. Comput. Syst. (2018).  https://doi.org/10.1016/j.future.2018.10.035CrossRefGoogle Scholar
  8. 8.
    Tzitzikas, Y., et al.: MatWare: constructing and exploiting domain specific warehouses by aggregating semantic data. In: Presutti, V., d’Amato, C., Gandon, F., d’Aquin, M., Staab, S., Tordai, A. (eds.) ESWC 2014. LNCS, vol. 8465, pp. 721–736. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-07443-6_48CrossRefGoogle Scholar
  9. 9.
    Marketakis, Y., et al.: X3ML mapping framework for information integration in cultural heritage and beyond. Int. J. Digit. Libr. 18(4), 1–19 (2016).  https://doi.org/10.1007/s00799-016-0179-1CrossRefGoogle Scholar
  10. 10.
    Vassiliadis, P.: A survey of extract–transform–load technology. Int. J. Data Warehouse. Min. (IJDWM) 5(3), 1–27 (2009)CrossRefGoogle Scholar
  11. 11.
    Knap, T., et al.: ODCleanStore: a framework for managing and providing integrated linked data on the web. In: Wang, X.S., Cruz, I., Delis, A., Huang, G. (eds.) WISE 2012. LNCS, vol. 7651, pp. 815–816. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-35063-4_74CrossRefGoogle Scholar
  12. 12.
    Knap, T., et al.: UnifiedViews: an ETL tool for RDF data management. Seman. Web 9(5), 661–676 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute of Computer ScienceFORTH-ICSHeraklionGreece
  2. 2.Computer Science DepartmentUniversity of CreteHeraklionGreece
  3. 3.Consiglio Nazionale delle RicerchePisaItaly
  4. 4.Food and Agriculture Organization of the United NationsRomeItaly

Personalised recommendations