SheepIT, an IoT-Based Weed Control System

  • Luís NóbregaEmail author
  • Paulo PedreirasEmail author
  • Pedro GonçalvesEmail author
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 953)


The SheepIT project aims at developing a solution for monitoring and controlling grazing sheep in vineyards and similar cultures. The system should operate autonomously and guarantee that sheep only feed from infestant weeds, leaving untouched the vines and their fruits. Moreover, the system should also collect data about sheep activity for logging and analysis purposes. This paper presents the overall system’s architecture and its rationale, with focus on the posture monitoring and control subsystem. It includes practical results, obtained from a use case. These results are encouraging, showing that the developed system is able to estimate the sheep’s posture with a high accuracy, that the stimuli are applied efficiently and that sheep have sufficient cognitive capacity to learn quickly which behaviours they should avoid. Despite being preliminary, these results provide good indications regarding the practicableness of the system.


Autonomous herd management IoT Sensing Posture control 



This work is supported by the European Structural Investment Funds (ESIF), through the Operational Competitiveness and Internationalization Programme (COMPETE 2020) [Project Nr. 017640 (POCI-01-0145-FEDER-017640)].


  1. 1.
    Popović, T., Latinović, N., Pešić, A., Zečević, Ž., Krstajić, B., Djukanović, S.: Architecting an IoT-enabled platform for precision agriculture and ecological monitoring: a case study. Comput. Electron. Agric. 140, 255–265 (2017)CrossRefGoogle Scholar
  2. 2.
    Ojha, T., Misra, S., Raghuwanshi, N.S.: Wireless sensor networks for agriculture: the state-of-the-art in practice and future challenges. Comput. Electron. Agric. 118, 66–84 (2015)CrossRefGoogle Scholar
  3. 3.
    Monteiro, A., Moreira, I.: Reduced rates of residual and post-emergence herbicides for weed control in vineyards. Weed Res. 44(2), 117–128 (2004)CrossRefGoogle Scholar
  4. 4.
    Kennedy, M., Skinkis, P.: Are Your Weed-control Products Damaging Nearby Vineyards? Acts Congr. Oregon State Univ. (2016)Google Scholar
  5. 5.
    Carlos, C.: Spraying challenges in the Douro Wine Region of Portugal. DOURO Reg. WINE Clust. (2014)Google Scholar
  6. 6.
    Dastgheib, F., Frampton, C.: Weed management practices in apple orchards and vineyards in the South Island of New Zealand. New Zeal. J. Crop Hortic. Sci. 28(1), 53–58 (2000)CrossRefGoogle Scholar
  7. 7.
    Bekkers, T.: Weed control options for commercial organic vineyards. Wine Vitic. J. 4, 62–64 (2011)Google Scholar
  8. 8.
    SheepIT Project (2017).
  9. 9.
    Nóbrega, L., Gonçalves, P., Pedreiras, P., Silva, S.: Energy efficient design of a pasture sensor network. In: The 5th International Conference on Future Internet of Things and Cloud- FiCloud 2017 (2017)Google Scholar
  10. 10.
    Turner, L.W., Udal, M.C., Larson, B.T., Shearer, S.A.: Monitoring cattle behavior and pasture use with GPS and GIS. Can. J. Anim. Sci. 80(3), 405–413 (2000)CrossRefGoogle Scholar
  11. 11.
    Kjellqvist, S.: Determining cattle pasture utilization using GPS-collars. slu (2008)Google Scholar
  12. 12.
    Augustine, D.J., Derner, J.D.: Assessing herbivore foraging behavior with GPS collars in a semiarid grassland. Sensors 13(3), 3711–3723 (2013)CrossRefGoogle Scholar
  13. 13.
    Dutta, R., et al.: Dynamic cattle behavioural classification using supervised ensemble classifiers. Comput. Electron. Agric. 111, 18–28 (2014)CrossRefGoogle Scholar
  14. 14.
    Williams, M.L., Mac Parthaláin, N., Brewer, P., James, W.P.J., Rose, M.T.: A novel behavioral model of the pasture-based dairy cow from GPS data using data mining and machine learning techniques. J. Dairy Sci. 99(3), 2063–2075 (2016)CrossRefGoogle Scholar
  15. 15.
    Bowman, J.L., Kochany, C.O., Demarais, S., Leopold, B.D.: Evaluation of a GPS collar for white-tailed deer. Wildl. Soc. Bull. 28(1), 141–145 (2000)Google Scholar
  16. 16.
    Nathan, R., Spiegel, O., Fortmann-Roe, S., Harel, R., Wikelski, M., Getz, W.M.: Using tri-axial acceleration data to identify behavioral modes of free-ranging animals: general concepts and tools illustrated for griffon vultures. J. Exp. Biol. 215(6), 986–996 (2012)CrossRefGoogle Scholar
  17. 17.
    Hunter, J., et al.: OzTrack – E-infrastructure to support the management, analysis and sharing of animal tracking data. In: 2013 IEEE 9th International Conference on e-Science, pp. 140–147 (2013)Google Scholar
  18. 18.
    Rutter, S.M., Beresford, N.A., Roberts, G.: Use of GPS to identify the grazing areas of hill sheep. Comput. Electron. Agric. 17(2), 177–188 (1997)CrossRefGoogle Scholar
  19. 19.
    Jouven, M., Leroy, H., Ickowicz, A., Lapeyronie, P.: Can virtual fences be used to control grazing sheep? Rangel. J. 34(1), 111–123 (2012)CrossRefGoogle Scholar
  20. 20.
    Umstätter, C., Waterhouse, A., Holland, J.P.: An automated sensor-based method of simple behavioural classification of sheep in extensive systems. Comput. Electron. Agric. 64(1), 19–26 (2008)CrossRefGoogle Scholar
  21. 21.
    Brunberg, E.I., Bergslid, I.K., Bøe, K.E., Sørheim, K.M.: The ability of ewes with lambs to learn a virtual fencing system. Animal 11(11), 2045–2050 (2017)CrossRefGoogle Scholar
  22. 22.
    Nadimi, E.S., Søgaard, H.T., Bak, T., Oudshoorn, F.W.: ZigBee-based wireless sensor networks for monitoring animal presence and pasture time in a strip of new grass. Comput. Electron. Agric. 61(2), 79–87 (2008)CrossRefGoogle Scholar
  23. 23.
    Kwong, K.H., et al.: Practical considerations for wireless sensor networks in cattle monitoring applications. Comput. Electron. Agric. 81, 33–44 (2012)CrossRefGoogle Scholar
  24. 24.
    Huircán, J.I., et al.: ZigBee-based wireless sensor network localization for cattle monitoring in grazing fields. Comput. Electron. Agric. 74(2), 258–264 (2010)CrossRefGoogle Scholar
  25. 25.
    Oguejiofor, O.S., Okorogu, V.N., Adewale, A., Osuesu, B.O.: Outdoor localization system using RSSI measurement of wireless sensor network. Int. J. Innov. Technol. Explor. Eng. 2(2), 1–6 (2013)Google Scholar
  26. 26.
    Thorstensen, B., Syversen, T., Bjornvold, T.-A., Walseth, T.: Electronic shepherd - a low-cost, low-bandwidth, wireless network system. In: MobiSys 2004: Proceedings of the 2nd International Conference on Mobile Systems, Applications, and Services, pp. 245–255 (2004)Google Scholar
  27. 27.
    Tiedemann, A., Quigley, T., White, L.: Electronic (fenceless) control of livestock. Res. Pap. PNWRP-510, Portland, OR. US For. Serv. Pacific Northwest Res. Station. Olympia, WA, USA., no. January 1999Google Scholar
  28. 28.
    Bishop-Hurley, G.J., Swain, D.L., Anderson, D.M., Sikka, P., Crossman, C., Corke, P.: Virtual fencing applications: implementing and testing an automated cattle control system. Comput. Electron. Agric. 56(1), 14–22 (2007)CrossRefGoogle Scholar
  29. 29.
    Fay, P.K., McElligott, V.T., Havstad, K.M.: Containment of free-ranging goats using pulsed-radio-wave-activated shock collars. Appl. Anim. Behav. Sci. 23(1–2), 165–171 (1989)CrossRefGoogle Scholar
  30. 30.
    Lee, C., Fisher, A.D., Reed, M.T., Henshall, J.M.: The effect of low energy electric shock on cortisol, [beta]-endorphin, heart rate and behaviour of cattle. Appl. Anim. Behav. Sci. 113(1–3), 32–42 (2008)CrossRefGoogle Scholar
  31. 31.
    ECMA: Technical Requirements for Electronic Pet Training and Containment Collars (2008)Google Scholar
  32. 32.
    Gubbi, J., Buyya, R., Marusic, S., Palaniswami, M.: Internet of Things (IoT): a vision, architectural elements, and future directions. Futur. Gener. Comput. Syst. 29(7), 1645–1660 (2013)CrossRefGoogle Scholar
  33. 33.
    Temprilho, A., Nóbrega, L., Gonçalves, P., Pedreiras, P., Silva, S.: M2M communication stack for intelligent farming. in Global Internet of Things Summit (GIoTS) (2018)Google Scholar
  34. 34.
    Umstatter, C., Brocklehurst, S., Ross, D.W., Haskell, M.J.: Can the location of cattle be managed using broadcast audio cues? Appl. Anim. Behav. Sci. 147(1–2), 34–42 (2013)CrossRefGoogle Scholar
  35. 35.
    Application note Using LSM303DLH for a tilt compensated electronic compass. - Pesquisa GoogleGoogle Scholar
  36. 36.
    Nóbrega, L., Pedreiras, P., Gonçalves, P., Temprilho, A., Morais, R.: SheepIT: automated vineyard weeding control system. In: INForum 2017 - Simpósio de Informática (2017)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.DETI/ITUniversity of AveiroAveiroPortugal
  2. 2.ESTGA/ITUniversity of AveiroAveiroPortugal

Personalised recommendations