Advertisement

ICT Innovations and Smart Farming

  • Claus Aage Grøn SørensenEmail author
  • Dimitrios Kateris
  • Dionysis Bochtis
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 953)

Abstract

Agriculture plays a vital role in the global economy with the majority of the rural population in developing countries depending on it. The depletion of natural resources makes the improvement of the agricultural production more important but also more difficult than ever. This is the reason that although the demand is constantly growing, Information and Communication Technology (ICT) offers to producers the adoption of sustainability and improvement of their daily living conditions. ICT offers timely and updated relevant information such as weather forecast, market prices, the occurrence of new diseases and varieties, etc. The new knowledge offers a unique opportunity to bring the production enhancing technologies to the farmers and empower themselves with modern agricultural technology and act accordingly for increasing the agricultural production in a cost effective and profitable manner. The use of ICT itself or combined with other ICT systems results in productivity improvement and better resource use and reduces the time needed for farm management, marketing, logistics and quality assurance.

Keywords

Agriculture Information and Communication Technology Robotic FMIS Precision Farming Management 

References

  1. 1.
    Samah, B.A., Shaffril, H.A.M., Hassan, M.S., Hassan, M.A., Ismail, N.: Contribution of information and communication technology in increasing agro-based entrepreneurs productivity in Malaysia. J. Agric. Soc. Sci. 5, 93–98 (2009)Google Scholar
  2. 2.
    Kaaya, J.: Role of information technology in agriculture. In: Proceedings of the Fourth Annual Research Conference of the Faculty of Agriculture, Sokoine University of Agriculture, pp. 315–328 (1999)Google Scholar
  3. 3.
    Milovanović, S. (Faculty of Economics, N. (Serbia)): The role and potential of information technology in agricultural improvement. Eкoнoмикa пoљoпpивpeдe/Econ. Agric. 61, 471–485 (2014)CrossRefGoogle Scholar
  4. 4.
    Sørensen, C.G., Bochtis, D.D.: Conceptual model of fleet management in agriculture. Biosyst. Eng. 105, 41–50 (2010).  https://doi.org/10.1016/j.biosystemseng.2009.09.009CrossRefGoogle Scholar
  5. 5.
    Sørensen, C.G., Pesonen, L., Bochtis, D.D., Vougioukas, S.G., Suomi, P.: Functional requirements for a future farm management information system. Comput. Electron. Agric. 729(2), 266–276 (2011).  https://doi.org/10.1016/j.compag.2011.02.005CrossRefGoogle Scholar
  6. 6.
    Van Zyl, O., Alexander, T., De Graaf, L., Mukherjee, K., Kumar, V.: ICTs for agriculture in Africa (2014)Google Scholar
  7. 7.
    Sørensen, C.G., et al.: Conceptual model of a future farm management information system. Comput. Electron. Agric. 72, 37–47 (2010).  https://doi.org/10.1016/j.compag.2010.02.003CrossRefGoogle Scholar
  8. 8.
    Sorensen, C.G., et al.: A user-centric approach for information modelling in arable farming. Comput. Electron. Agric. 73, 44–55 (2010)CrossRefGoogle Scholar
  9. 9.
    Bochtis, D.D., Sørensen, C.G.C., Busato, P.: Advances in agricultural machinery management: a review. Biosyst. Eng. 126, 69–81 (2014).  https://doi.org/10.1016/j.biosystemseng.2014.07.012CrossRefGoogle Scholar
  10. 10.
    Sørensen, C.G.C.: Decision support systems as a part of agricultural operational management. In: CIOSTA - CIGR V XXVIII International Congress, Horsens, Denmark (1999)Google Scholar
  11. 11.
    Busato, P., Berruto, R., Cornelissen, R.: Bioenergy farm Project: economic and energy analysis of biomass by web application. In: 19th European Biomass Conference (2011)Google Scholar
  12. 12.
    Ballantyne, P., Maru, A., Porcari, E.M.: Information and communication technologies—opportunities to mobilize agricultural science for development. Crop Sci. 50, S-63 (2010).  https://doi.org/10.2135/cropsci2009.09.0527CrossRefGoogle Scholar
  13. 13.
    Bisgaard, M., Vinther, D., Ostergaard, K.Z.: Modelling and Fault-Tolerant Control of an Autonomous Wheeled Robot. Group (2004)Google Scholar
  14. 14.
    Bochtis, D., Griepentrog, H.W., Vougioukas, S., Busato, P., Berruto, R., Zhou, K.: Route planning for orchard operations. Comput. Electron. Agric. 113, 51–60 (2015).  https://doi.org/10.1016/j.compag.2014.12.024CrossRefGoogle Scholar
  15. 15.
    Bochtis, D.D., Vougioukas, S.G., Griepentrog, H.W.: A mission planner for an autonomous tractor. Trans. ASABE 52(5), 1429–1440 (2009).  https://doi.org/10.13031/2013.29123CrossRefGoogle Scholar
  16. 16.
    Van Henten, E.J., Schenk, E.J., van Willigenburg, L.G., Meuleman, J., Barreiro, P.: Collision-free inverse kinematics of the redundant seven-link manipulator used in a cucumber picking robot. Biosyst. Eng. 106, 112–124 (2010).  https://doi.org/10.1016/j.biosystemseng.2010.01.007CrossRefGoogle Scholar
  17. 17.
    Zhao, Y., Gong, L., Huang, Y., Liu, C.: Robust tomato recognition for robotic harvesting using feature images fusion. Sensors (Switzerland). 16 (2016).  https://doi.org/10.3390/s16020173CrossRefGoogle Scholar
  18. 18.
    Schor, N., Bechar, A., Ignat, T., Dombrovsky, A., Elad, Y., Berman, S.: Robotic disease detection in greenhouses: combined detection of powdery mildew and tomato spotted wilt virus. IEEE Robot. Autom. Lett. 1, 354–360 (2016).  https://doi.org/10.1109/LRA.2016.2518214CrossRefGoogle Scholar
  19. 19.
    Vitzrabin, E., Edan, Y.: Changing task objectives for improved sweet pepper detection for robotic harvesting. IEEE Robot. Autom. Lett. 1, 578–584 (2016).  https://doi.org/10.1109/LRA.2016.2519946CrossRefGoogle Scholar
  20. 20.
    Hayashi, S., et al.: Evaluation of a strawberry-harvesting robot in a field test. Biosyst. Eng. 105, 160–171 (2010).  https://doi.org/10.1016/j.biosystemseng.2009.09.011CrossRefGoogle Scholar
  21. 21.
    Xu, Y., Imou, K., Kaizu, Y., Saga, K.: Two-stage approach for detecting slightly overlapping strawberries using HOG descriptor. Biosyst. Eng. 115, 144–153 (2013).  https://doi.org/10.1016/j.biosystemseng.2013.03.011CrossRefGoogle Scholar
  22. 22.
    Blanes, C., Ortiz, C., Mellado, M., Beltrán, P.: Assessment of eggplant firmness with accelerometers on a pneumatic robot gripper. Comput. Electron. Agric. 113, 44–50 (2015).  https://doi.org/10.1016/j.compag.2015.01.013CrossRefGoogle Scholar
  23. 23.
    Mann, M., Zion, B., Shmulevich, I., Rubinstein, D.: Determination of robotic melon harvesting efficiency: a probabilistic approach. Int. J. Prod. Res. 54, 3216–3228 (2016).  https://doi.org/10.1080/00207543.2015.1081428CrossRefGoogle Scholar
  24. 24.
    Irie, N., Taguchi, N., Horie, T., Ishimatsu, T.: Asparagus harvesting robot coordinated with 3-D vision sensor. In: Proceedings of the IEEE International Conference on Industrial Technology (2009)Google Scholar
  25. 25.
    Choi, K.H., Han, S.K., Han, S.H., Park, K.H., Kim, K.S., Kim, S.: Morphology-based guidance line extraction for an autonomous weeding robot in paddy fields. Comput. Electron. Agric. 113, 266–274 (2015).  https://doi.org/10.1016/j.compag.2015.02.014CrossRefGoogle Scholar
  26. 26.
    Reed, J.N., Miles, J.S., Butler, J., Baldwin, M., Noble, R.: Automation and emerging technologies for automatic mushroom harvester development. J. Agric. Eng. Res. 78, 15–23 (2001)CrossRefGoogle Scholar
  27. 27.
    Tanigaki, K., Fujiura, T., Akase, A., Imagawa, J.: Cherryharvesting robot. Comput. Electron. Agric. 63, 65–72 (2008)CrossRefGoogle Scholar
  28. 28.
    Nguyen, T.T., Kayacan, E., De Baedemaeker, J., Saeys, W.: Task and motion planning for apple harvesting robot. In: IFAC Proceedings Volumes (IFAC-PapersOnline), pp. 247–252 (2013)CrossRefGoogle Scholar
  29. 29.
    Hannan, M.W., Burks, T.F., Bulanon, D.M.: A real-time machine vision algorithm for robotic citrus harvesting. Written for Presentation at the 2007 ASABE Annual International Meeting Sponsored by ASABE (2007). Am. Soc. Agric. Biol. Eng. Ann. Int. Meet. 0300, 1–12 (2007).  https://doi.org/10.13031/2013.23429
  30. 30.
    Yoon, B., Kim, S.: Design of paddy weeding robot. In: 2013 44th International Symposium on Robotics, ISR 2013 (2013)Google Scholar
  31. 31.
    Bochtis, D.D., Sørensen, C.G., Jørgensen, R.N., Nørremark, M., Hameed, I.A., Swain, K.C.: Robotic weed monitoring. Acta Agric. Scand. Sect. B Soil Plant Sci. 61(3), 202–208 (2011).  https://doi.org/10.1080/09064711003796428CrossRefGoogle Scholar
  32. 32.
    Haibo, L., Shuliang, D., Zunmin, L., Chuijie, Y.: Study and experiment on a wheat precision seeding robot. J. Robot. 2015 (2015).  https://doi.org/10.1155/2015/696301CrossRefGoogle Scholar
  33. 33.
    Pierce, F.J., Nowak, P.: Aspects of precision agriculture. Adv. Agron. 67, 1–85 (1999).  https://doi.org/10.1016/S0065-2113(08)60513-1CrossRefGoogle Scholar
  34. 34.
    Fountas, S., Aggelopoulou, K., Gemtos, T.A.: Precision agriculture: crop management for improved productivity and reduced environmental impact or improved sustainability. In: Supply Chain Management for Sustainable Food Networks, pp. 41–65. Wiley, Chichester (2015)CrossRefGoogle Scholar
  35. 35.
    Pierpaoli, E., Carli, G., Pignatti, E., Canavari, M.: Drivers of precision agriculture technologies adoption: a literature review. Proc. Technol. 8, 61–69 (2013).  https://doi.org/10.1016/J.PROTCY.2013.11.010CrossRefGoogle Scholar
  36. 36.
    Bochtis, D.D., Sørensen, C.G., Busato, P., Berruto, R.: Benefits from optimal route planning based on B-patterns. Biosyst. Eng. 15, 389–395 (2013).  https://doi.org/10.1016/j.biosystemseng.2013.04.006CrossRefGoogle Scholar
  37. 37.
    Bechar, A., Vigneault, C.: Agricultural robots for field operations. Part 2: operations and systems. Biosyst. Eng. 153, 110–128 (2017).  https://doi.org/10.1016/j.biosystemseng.2016.11.004CrossRefGoogle Scholar
  38. 38.
    Kutter, T., Tiemann, S., Siebert, R., Fountas, S.: The role of communication and co-operation in the adoption of precision farming. Precis. Agric. 12, 2–17 (2011).  https://doi.org/10.1007/s11119-009-9150-0CrossRefGoogle Scholar
  39. 39.
    Knapper, A., Nes, N.V., Christoph, M., Hagenzieker, M., Brookhuis, K.: The use of navigation systems in naturalistic driving. Traffic Inj. Prev. 17, 264–270 (2016).  https://doi.org/10.1080/15389588.2015.1077384CrossRefGoogle Scholar
  40. 40.
    Bryden, K.J., Charlton, J.L., Oxley, J.A., Lowndes, G.J.: Acceptance of navigation systems by older drivers. Gerontechnology 13, 21–28 (2014).  https://doi.org/10.4017/gt.2014.13.1.011.00CrossRefGoogle Scholar
  41. 41.
    Joubert, J.W., Meintjes, S.: Repeatability & reproducibility: implications of using GPS data for freight activity chains. Transp. Res. Part B Methodol. 76, 81–92 (2015).  https://doi.org/10.1016/J.TRB.2015.03.007CrossRefGoogle Scholar
  42. 42.
    Hameed, I.A., Bochtis, D., Sørensen, C.A.: An optimized field coverage planning approach for navigation of agricultural robots in fields involving obstacle areas. Int. J. Adv. Robot. Syst. 10, 231 (2013).  https://doi.org/10.5772/56248CrossRefGoogle Scholar
  43. 43.
    Jensen, M.A.F., Bochtis, D., Sorensen, C.G., Blas, M.R., Lykkegaard, K.L.: In-field and inter-field path planning for agricultural transport units. Comput. Ind. Eng. 63(4), 1054–1061 (2012).  https://doi.org/10.1016/j.cie.2012.07.004CrossRefGoogle Scholar
  44. 44.
    Zhou, K., Leck Jensen, A., Sørensen, C.G., Busato, P., Bothtis, D.D.: Agricultural operations planning in fields with multiple obstacle areas. Comput. Electron. Agric. 109, 12–22 (2014).  https://doi.org/10.1016/j.compag.2014.08.013CrossRefGoogle Scholar
  45. 45.
    Jensen, M.F., Sørensen, C.G., Bochtis, D.: Coverage planning for capacitated field operations, Part II: optimisation. Biosyst. Eng. 139, 149–164 (2015).  https://doi.org/10.1016/j.biosystemseng.2015.07.002CrossRefGoogle Scholar
  46. 46.
    McCown, R.L.: Changing systems for supporting farmers’ decisions: problems, paradigms, and prospects. Agric. Syst. 74, 179–220 (2002).  https://doi.org/10.1016/S0308-521X(02)00026-4CrossRefGoogle Scholar
  47. 47.
    Lewis, T.: Evolution of farm management information systems. Comput. Electron. Agric. 19, 233–248 (1998).  https://doi.org/10.1016/S0168-1699(97)00040-9CrossRefGoogle Scholar
  48. 48.
    Folinas, D.: A conceptual framework for business intelligence based on activities monitoring systems. Int. J. Intell. Enterp. 1, 65 (2007).  https://doi.org/10.1504/IJIE.2007.013811CrossRefGoogle Scholar
  49. 49.
    O’Brien, J.: Management Information Systems – Managing Information Technology in the Internetworked Enterprise. Irwin McGraw-Hill, Boston (1999)Google Scholar
  50. 50.
    Sørensen, C., et al.: System Analysis and Definition of System Boundaries. FutureFarm (2009)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Claus Aage Grøn Sørensen
    • 1
    Email author
  • Dimitrios Kateris
    • 2
  • Dionysis Bochtis
    • 2
  1. 1.Department of EngineeringAarhus UniversityAarhus NDenmark
  2. 2.Institute for Bio-Economy and Agri-Technology (IBO)Center for Research and Technology Hellas (CERTH)Thermi, ThessalonikiGreece

Personalised recommendations