Advertisement

Big Data, Small Data, and Getting Products Right First Time

  • Human Ramezani
  • Andre Luckow
Chapter

Abstract

Data in its various shapes is the foundation of Industry 4.0 and has become a critical component for many aspects of advanced manufacturing. The term Industry 4.0 encompasses a broad set of technological, organizational, and societal changes along the entire value chain of industrial corporations. Industry 4.0 promises to shorten development cycles and improve flexibility and the ability to customize products while benefiting from higher efficiencies. In the following we focus on data-related aspects.

Keywords

Big data Small data RFID Augmented/virtual reality AI computer vision 3D advanced printing Ergonomics Visual inspection Logistics Natural language processing (NLP) Blockchain 

References

  1. Androulaki, E., Barger, A., Bortnikov, V., Cachin, C., Christidis, K., De Caro, A., Enyeart, D., Ferris, C., Laventman, G., Manevich, Y., ralidharan, S. M., Murthy, C., Nguyen, B., Sethi, M., Singh, G., Smith, K., Sorniotti, A., Stathakopoulou, C., Vukolic, M., Cocco, S. W., & Yellick, J. (2018). Hyperledger fabric: A distributed operating system for permissioned blockchains. In Proceedings of the thirteenth EuroSys conference, EuroSys ‘18 (pp. 30:1–30:15). New York: ACM.Google Scholar
  2. Baird, L., Harmon, M., & Madsen, P. (2018). Hedera: A governing council & public hashgraph network. https://s3.amazonaws.com/hedera-hashgraph/hh-whitepaper-v1.1-180518.pdf
  3. BMW. (2018). Intelligent personal assistant. https://www.bmwgroup.com/en/company/bmw-group-news/artikel/IPA.html
  4. Bruner, J. (2013). The industrial internet – the machines are talking. http://radar.oreilly.com/2013/03/industrial-internet-report.html
  5. Burke, B., Cearley, D., & Blau, B. (2018). Top 10 strategic technology trends for 2018: Immersive experience. G00344889.Google Scholar
  6. Buterin, V., et al. (2018). Ethereum: A next-generation smart contract and decentralized application plat-form. White Paper: https://github.com/ethereum/wiki/wiki/White-Paper
  7. Caballero, G., & Hamilton, S. (2018). Blockchain in supply chains: Looking beyond the hype. MIT https://ctl.mit.edu/events/tue-10242017-1730/blockchain-supply-chains-looking-beyond-hype
  8. Dhar, V. (December 2013). Data science and prediction. Communications of the ACM, 56(12), 64–73.CrossRefGoogle Scholar
  9. Evans, P. C., & Annunziate, M. (2012). Industrial internet, ge technical report. http://www.ge.com/sites/default/files/Industrial_Internet.pdf
  10. Friedrich, W. (Oct 2002). Arvika-augmented reality for development, production and service. In Proceedings of international symposium on mixed and augmented reality (pp. 3–4).CrossRefGoogle Scholar
  11. Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT Press. http://www.deeplearningbook.org.
  12. Hearn, M. (2016). Corda: A distributed ledger. https://www.corda.net/content/corda-technical-whitepaper.pdf
  13. Hellinger, A., Stumpf, V., & Kobsda, C. (Eds.). (2013). Umsetzungsempfehlungen fur das Zukunftsprojekt Industrie 4.Google Scholar
  14. Hung, M. (2018). Iot implementation and management — from the edge to the cloud: A gartner trend insight report. Gartner.Google Scholar
  15. Lasi, H., Fettke, P., Kemper, H.-G., Feld, T., & Hoffmann, M. (Aug 2014). Industry 4.0. Business and Information Systems Engineering, 6(4), 239–242.CrossRefGoogle Scholar
  16. Luckow, A., Cook, M., Ashcraft, N., Weill, E., Djerekarov, E., & Vorster, B. (2016, Dec). Deep learning in the automotive industry: Applications and tools. In 2016 IEEE international conference on Big Data (Big Data) (pp. 3759–3768).Google Scholar
  17. Luckow, A., Kennedy, K., Ziolkowski, M., Djerekarov, E., Cook, M., Duffy, E., Schleiss, M., Vorster, B., Weill, E., Kulshrestha, A., & Smith, M. (2018, Dec). Artificial in- telligence and deep learning applications for automotive manufacturing. In 2018 IEEE international conference on Big Data (Big Data).Google Scholar
  18. Ma, M., Luckow, A., Kennedy, K., & Schleiss, M. (2018). Voice bot system design for appli- cation with collaborative robotics in manufacturing. in submission.Google Scholar
  19. Miehle, D., Stroebel, M., Henze, D., Seitz, A., & Bruegge, B. (2018). Partchain: A blockchain-based traceability system for supply chain networks. in preparation.Google Scholar
  20. MINI. (2018). Yours customised. https://yours-customised.mini
  21. Nakamoto, S. (2008). Bitcoin: A peer-to-peer electronic cash system, http://bitcoin.org/bitcoin.pdf
  22. Ohno, T. (1988). Toyota production system: Beyond large-scale production. Taylor & Francis.Google Scholar
  23. Popov, S. (2017). The tangle. http://iotatoken.com/IOTA_Whitepaper.pdf
  24. Ramaraj, M. K. (2015). A training assistant tool for the automated visual inspection system. https://tigerprints.clemson.edu/cgi/viewcontent.cgi?article=3290&context=all_theses, 9.
  25. Rosenfeld, M. (2012). Overview of colored coins. https://bitcoil.co.il/BitcoinX.pdf
  26. Seidl, A. (1997). Ramsis-a new cad-tool for ergonomic analysis of vehicles developed for the german automotive industry. Technical report, SAE Technical Paper.Google Scholar
  27. Srivastava, A., Nguyen, D., Aggarwal, S., Luckow, A., Duffy, E., Kennedy, K., Ziolkowski, M., & Apon, A. (Dec 2018). Performance and memory trade-offs of deep learning object detec- tion in fast streaming high-definition images. In 2018 IEEE international conference on Big Data (Big Data).Google Scholar
  28. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S. E., Anguelov, D., Erhan, D., Vanhoucke, V., & Rabinovich, A. (2014). Going deeper with convolutions. CoRR, abs/1409.4842.Google Scholar
  29. XAIN. (2018). Xain: The trusted access control protocol for machine networks. https://xain.io/

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Human Ramezani
    • 1
  • Andre Luckow
    • 2
  1. 1.Den HaagNetherlands
  2. 2.MunichGermany

Personalised recommendations