Advertisement

A New DNA-Combining Chaos Scheme for Fast and Secure Image Encryption

  • Augustin Ousmanou Ahgue
  • Jean De Dieu NkapkopEmail author
  • Joseph Yves Effa
  • Samuel Franz
  • Raul Malutan
  • Monica Borda
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11359)

Abstract

This paper aims to introduce a new secured image encryption scheme base on Peace Wise Linear Chaotic Map (PWLCM) and DeoxyriboNucleic Acid (DNA) encoding. The first step is to increase the entropy of the original image by applying a dynamical XOR operation through all the pixels of the image. To satisfy security requirement inherent to an encryption algorithm, PWLCM random sequences are combined with DNA encoding rules, picked randomly among 8 rules available, in order to generate a DNA OTP-key used for encryption. The last step is to replace every pixel of the image with a randomly chosen index that corresponds to one index of occurrence of its DNA equivalent in the OTP-key following an S-BOX strategy. Experimental results show that this encryption algorithm is fast and efficient compared to existing solutions, but also secure to various types of attacks such as statistical attacks, differential attack or brute-force attacks.

Keywords

DNA sequence Chaos PWLCM Image encryption OTP S-Box 

Notes

Acknowledgement

The work described in this paper was supported under the Postdoctoral Fellowships Program “Eugen Ionescu” funded by Romania government and managed by the “Agence Universitaire de la Francophonie (AUF)”.

References

  1. 1.
    Wang, Y., Zhang, X., Zheng, Z., Qiu, W.: A colour image encryption algorithm using 4-pixel feistel structure and multiple chaotic systems. Nonlinear Dyn. 81, 151–168 (2015).  https://doi.org/10.1007/s11071-015-1979-3MathSciNetCrossRefGoogle Scholar
  2. 2.
    Armand Eyebe Fouda, J.S., Yves Effa, J., Samrat, S.L., Ali, M.: A fast chaotic block cipher for image encryption. Commun. Nonlinear Sci. Numer. 19, 578–588 (2014).  https://doi.org/10.1016/j.cnsns.2013.07.016MathSciNetCrossRefGoogle Scholar
  3. 3.
    Sivakumar, T., Venkatesan, R.: A novel approach for image encryption using dynamic scan patter. IAENG Int. J. Comput. Sci. 4, 91–101 (2014)Google Scholar
  4. 4.
    Ghebleh, M., Kanso, A., Noura, H.: An image encryption scheme based on irregularly decimated chaotic maps. Signal Process.: Image Commun. 29, 618–627 (2014).  https://doi.org/10.1016/j.image.2013.09.009CrossRefGoogle Scholar
  5. 5.
    Wang, X., Gu, S., Zhang, Y.: Novel image encryption algorithm based on cycle shift and chaotic system. Opt. Lasers Eng. 68, 126–134 (2015).  https://doi.org/10.1016/j.optlaseng.2014.12.025CrossRefGoogle Scholar
  6. 6.
    Arroyo, D., Rhouma, R., Alvarez, G., Li, S., Fernandez, V.: On the security of a new image encryption scheme based on chaotic map lattices. Chaos: Interdisc. J. Nonlinear Sci. 18, 033112 (2008).  https://doi.org/10.1063/1.2959102CrossRefGoogle Scholar
  7. 7.
    Chong, F., Chen, J.-J., Zou, H., Meng, W.-H., Zhan, Y.-F.: A chaos-based digital image encryption with an improved permutation strategy. Opt. Expr. 20, 2363–2378 (2012).  https://doi.org/10.1364/OE.20.002363CrossRefGoogle Scholar
  8. 8.
    Seyedzadeh, M., Mirzakuchaki, S.: A fast color image encryption algorithm based on coupled two- dimensional piecewise chaotic map. Signal process. 92, 1202–1215 (2012).  https://doi.org/10.1016/j.sigpro.2011.11.004CrossRefGoogle Scholar
  9. 9.
    Wong Wang, Y., Liao, K.-W., Chen, X., Chen, G.: A new chaos-based fast image encryption algorithm. Appl. Soft Comput. 11, 514–522 (2011).  https://doi.org/10.1016/j.asoc.2009.12.011CrossRefGoogle Scholar
  10. 10.
    Chai, X., Chen, Y., Broyde, L.: A novel chaos-based image encryption algorithm using DNA sequence operations. Opt. Lasers Eng. 88, 197–213 (2017).  https://doi.org/10.1016/j.optlaseng.2016.08.009CrossRefGoogle Scholar
  11. 11.
    Wang, X.-Y., Zhang, Y.-Q., Baom, X.-M.: A novel chaotic image encryption scheme using DNA sequence operations. Opt. Lasers Eng. 73, 53–61 (2015).  https://doi.org/10.1016/j.optlaseng.2015.03.022CrossRefGoogle Scholar
  12. 12.
    Song, C., Qiao, Y.: A novel image encryption algorithm based on DNA encoding and spatiotemporal chaos. Entropy 17, 6954–6968 (2015).  https://doi.org/10.1016/j.optlaseng.2015.03.022MathSciNetCrossRefGoogle Scholar
  13. 13.
    Zhen, P., Zhao, G., Min, L., Jin, X.: Chaos-based image encryption scheme combining DNA coding and entropy. Multimed. Tools Appl. 75, 6303–6319 (2016).  https://doi.org/10.1007/s11042-015-2573-xCrossRefGoogle Scholar
  14. 14.
    Liu, H., Wang, X., Kadir, A.: Image encryption using DNA complementary rule and chaotic maps. Appl. Soft Comput. 12, 1457–1466 (2012).  https://doi.org/10.1016/j.asoc.2012.01.016CrossRefGoogle Scholar
  15. 15.
    Wei, X., Guo, L., Zhang, Q., Zhang, J., Lian, S.: A novel color image encryption algorithm based on DNA sequence operation and hyper-chaotic system. J. Syst. Softw. 85, 290–299 (2012).  https://doi.org/10.1016/j.jss.2011.08.017CrossRefGoogle Scholar
  16. 16.
    Hu, T., Liu, Y., Gong, L.-H., Ouyang, C.-J.: An image encryption scheme combining chaos with cycle operation for DNA sequences. Nonlinear Dyn. 87, 51–66 (2017).  https://doi.org/10.1007/s11071-016-3024-6CrossRefGoogle Scholar
  17. 17.
    Liu, Y., Tang, J., Xie, T.: Cryptanalyzing a RGB image encryption algorithm based on DNA encoding and chaos map. Opt. Laser Technol. 60, 111–115 (2014).  https://doi.org/10.1016/j.optlastec.2014.01.015CrossRefGoogle Scholar
  18. 18.
    Jagadeesh, P., Nagabhushan, P., Kumar, R.: A new image scrambling scheme through chaotic permutation and geometric grid based noise induction. Int. J. Comput. Appl. 78, 38–45 (2013)Google Scholar
  19. 19.
    Rhouma, R., Solak, E., Belghith, S.: Cryptanalysis of a new substitution-diffusion based image cipher. Commun. Nonlinear Sci. Numer. Simul. 15, 1887–1892 (2010).  https://doi.org/10.1016/j.cnsns.2009.07.007MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Li, C., Arroyo, D., Lo, K.: Breaking a chaotic cryptographic scheme based on composition maps. Int. J. Bifurcat. Chaos 20, 2561–2568 (2010).  https://doi.org/10.1142/S0218127410027192MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Alvarez, G., Li, S.: Cryptanalyzing a nonlinear chaotic algorithm (NCA) for image encryption. Commun. Nonlinear Sci. Numer. Simul. 4, 3743–3749 (2009).  https://doi.org/10.1016/j.cnsns.2009.02.033CrossRefGoogle Scholar
  22. 22.
    Cui, G., Qin, L., Wang, Y., Zhang, X.: An encryption scheme using DNA technology. In: 3rd International Conference on Bio-Inspired Computing: Theories and Applications, pp. 37–42. IEEE (2008)Google Scholar
  23. 23.
    Zhang, Q., Zhou, S., Wei, X.: An efficient approach for fractal-based image encryption. Appl. Math. Inf. Sci. 5, 445–459 (2011)MathSciNetGoogle Scholar
  24. 24.
    Watson, J.D., Crick, F.: A structure for deoxyribose nucleic acid. Nature 171, 737–738 (1953)CrossRefGoogle Scholar
  25. 25.
    Shannon, C.: Communication theory of secrecy systems. Bell Syst. Tech. J. 28, 656–715 (1949)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Augustin Ousmanou Ahgue
    • 1
  • Jean De Dieu Nkapkop
    • 1
    Email author
  • Joseph Yves Effa
    • 1
  • Samuel Franz
    • 2
  • Raul Malutan
    • 3
  • Monica Borda
    • 3
  1. 1.University of NgaoundéréNgaoundéréCameroon
  2. 2.ENSEIRB MATMECA of BordeauxBordeauxFrance
  3. 3.Technical University of Cluj-NapocaCluj-NapocaRomania

Personalised recommendations