Post-quantum Cryptography and a (Qu)Bit More

  • Diana MaimuţEmail author
  • Emil Simion
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11359)


Probabilities govern our day to day lives. Undoubtedly, we construct many of our judgments based on assumptions. A scientific example is the case of public-key encryption, where hardness assumptions are the main ingredient of provable security. But, while such clever mathematical ideas mesmerized both researchers and users since the 1970’s, a rather new assumption shakes the cryptographic world: the eventual construction of quantum computers. In this article, we provide the reader with a comprehensive overview regarding post-quantum cryptography. Compared to other well established surveys which underline the importance of designing post-quantum public-key cryptographic algorithms, we stress that symmetric key cryptography should receive the same amount of attention from the scientific community.


Post-quantum cryptography Quantum cryptography Quantum computer Quantum bit Quantum cryptanalysis 


  1. 1.
  2. 2.
  3. 3.
  4. 4.
  5. 5.
  6. 6.
  7. 7.
    Ajtai, M.A.: Generating hard instances of lattice problems (extended abstract). In: Proceedings of the 28th Annual ACM Symposium on Theory of Computing. STOC 1996, pp. 99–108. ACM (1996)Google Scholar
  8. 8.
    Ajtai, M.A., Dwork, C.: A public-key cryptosystem with worst-case/average-case equivalence. In: Proceedings of the 29th Annual ACM Symposium on Theory of Computing. STOC 1997, pp. 284–293. ACM (1997)Google Scholar
  9. 9.
    Alagic, G., Gagliardoni, T., Majenz, C.: Unforgeable quantum encryption. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10822, pp. 489–519. Springer, Cham (2018). Scholar
  10. 10.
    Alagic, G., Russell, A.: Quantum-secure symmetric-key cryptography based on hidden shifts. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10212, pp. 65–93. Springer, Cham (2017). Scholar
  11. 11.
    Aumasson, J.P.: Serious Cryptography: A Practical Introduction to Modern Encryption. No Starch Press, San Francisco (2017)Google Scholar
  12. 12.
    Bennett, C.H., Bernstein, E., Brassard, G., Vazirani, U.: Strengths and weaknesses of quantum computing. SIAM J. Comput. 26(5), 1510–1523 (1997)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Berlekamp, E., McEliece, R., van Tilborg, H.: On the inherent intractability of certain coding problems (Corresp.). IEEE Trans. Inf. Theory 24(3), 384–386 (2006)CrossRefGoogle Scholar
  14. 14.
    Bernstein, D.J., et al.: SPHINCS: practical stateless hash-based signatures. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 368–397. Springer, Heidelberg (2015). Scholar
  15. 15.
    Bernstein, D.J., Lange, T., Peters, C.: Attacking and defending the McEliece cryptosystem. In: Buchmann, J., Ding, J. (eds.) PQCrypto 2008. LNCS, vol. 5299, pp. 31–46. Springer, Heidelberg (2008). Scholar
  16. 16.
    Bernstein, D.J.: Introduction to post-quantum Cryptography. In: Bernstein, D.J., Buchmann, J., Dahmen, E. (eds.) Post-Quantum Cryptography, pp. 1–14. Springer, Heidelberg (2009). Scholar
  17. 17.
    Bernstein, E., Vazirani, U.: Quantum complexity theory. In: Proceedings of the 25th Annual ACM Symposium on Theory of Computing, pp. 11–20. ACM (1993)Google Scholar
  18. 18.
    Bonnetain, X., Naya-Plasencia, M.: Hidden shift quantum cryptanalysis and implications. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018. LNCS, vol. 11272, pp. 560–592. Springer, Cham (2018). Scholar
  19. 19.
    Bruinderink, L.G., Hülsing, A., Lange, T., Yarom, Y.: Flush, gauss, and reload - a cache attack on the BLISS lattice-based signature scheme (2016).
  20. 20.
    Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption Standard. Springer, Heidelberg (2002). Scholar
  21. 21.
    Delfs, C., Galbraith, S.D.: Computing isogenies between supersingular elliptic curves over \(\mathbb{F}_p\). Des. Codes Crypt. 78(2), 425–440 (2016)CrossRefGoogle Scholar
  22. 22.
    Fell, H., Diffie, W.: Analysis of a public key approach based on polynomial substitution. In: Williams, H.C. (ed.) CRYPTO 1985. LNCS, vol. 218, pp. 340–349. Springer, Heidelberg (1986). Scholar
  23. 23.
    Feo, L.D., Jao, D., Plût, J.: Towards quantum-resistant cryptosystems from supersingular elliptic curve isogenies.
  24. 24.
    Feynman, R.P.: Simulating physics with computers. Int. J. Theor. Phys. 21(6/7), 467–488 (1982)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Gagliardoni, T.: Quantum security of cryptographic primitives. Ph.D. thesis, Technische Universität Darmstadt (2017)Google Scholar
  26. 26.
    Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the 28th Annual ACM Symposium on Theory of Computing - STOC 1996, pp. 212–219. ACM (1996)Google Scholar
  27. 27.
    Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: a ring-based public key cryptosystem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 267–288. Springer, Heidelberg (1998). Scholar
  28. 28.
    Kaplan, M., Leurent, G., Leverrier, A.,  Naya-Plasencia, M.: Breaking symmetric cryptosystems using quantum period finding. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815, pp. 207–237. Springer, Heidelberg (2016). Scholar
  29. 29.
    Maimuţ, D.: Antifragilitatea: o nouă strategie în securitatea informaţiei. Ştiinţă & Tehnică 76, 34–35 (2018)Google Scholar
  30. 30.
    Matsumoto, T., Imai, H.: Public quadratic polynomial-tuples for efficient signature-verification and message-encryption. In: Barstow, D., et al. (eds.) EUROCRYPT 1988. LNCS, vol. 330, pp. 419–453. Springer, Heidelberg (1988). Scholar
  31. 31.
    McEliece, R.J.: A public-key cryptosystem based on algebraic coding theory. DSN Prog. Rep. 42(44), 114–116 (1978)Google Scholar
  32. 32.
    Merkle, R.C.: Secrecy, authentication, and public key systems. Ph.D. thesis (1979)Google Scholar
  33. 33.
    Nassim, N.T.: Antifragile: Things That Gain from Disorder. Random House, New York City (2012)Google Scholar
  34. 34.
    Naya-Plasencia, M.: Symmetric cryptography for long-term security. Habilitation thesis, Pierre et Marie Curie Université (2017)Google Scholar
  35. 35.
    Nguyen, P., Stern, J.: Cryptanalysis of the ajtai-dwork cryptosystem. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 223–242. Springer, Heidelberg (1998). Scholar
  36. 36.
    Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition, 10th edn. Cambridge University Press, Cambridge (2011)zbMATHGoogle Scholar
  37. 37.
    Patarin, J.: Hidden fields equations (HFE) and isomorphisms of polynomials (IP): two new families of asymmetric algorithms. In: Maurer, U. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 33–48. Springer, Heidelberg (1996). Scholar
  38. 38.
    Regev, O.: Lattice-based cryptography. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 131–141. Springer, Heidelberg (2006). Scholar
  39. 39.
    Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)MathSciNetCrossRefGoogle Scholar
  40. 40.
    Simon, D.R.: On the power of quantum computation. In: FOCS 1994, pp. 116–123. IEEE Computer Society (1994)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Advanced Technologies InstituteBucharestRomania
  2. 2.Politehnica University of BucharestBucharestRomania

Personalised recommendations